Complexity of Quasivariety Lattices for Varieties of Unary Algebras
Matematičeskie trudy, Tome 4 (2001) no. 2, pp. 113-127.

Voir la notice de l'article provenant de la source Math-Net.Ru

With the help of the sufficient conditions of [1, 2] for $\mathcal Q$-universality we show that, for each $n\geqslant 2$, there exists a minimal $\mathcal Q$-universal variety of unary algebras with $n$ fundamental operations.
@article{MT_2001_4_2_a5,
     author = {A. V. Kravchenko},
     title = {Complexity of {Quasivariety} {Lattices} for {Varieties} of {Unary} {Algebras}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {113--127},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2001_4_2_a5/}
}
TY  - JOUR
AU  - A. V. Kravchenko
TI  - Complexity of Quasivariety Lattices for Varieties of Unary Algebras
JO  - Matematičeskie trudy
PY  - 2001
SP  - 113
EP  - 127
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2001_4_2_a5/
LA  - ru
ID  - MT_2001_4_2_a5
ER  - 
%0 Journal Article
%A A. V. Kravchenko
%T Complexity of Quasivariety Lattices for Varieties of Unary Algebras
%J Matematičeskie trudy
%D 2001
%P 113-127
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2001_4_2_a5/
%G ru
%F MT_2001_4_2_a5
A. V. Kravchenko. Complexity of Quasivariety Lattices for Varieties of Unary Algebras. Matematičeskie trudy, Tome 4 (2001) no. 2, pp. 113-127. http://geodesic.mathdoc.fr/item/MT_2001_4_2_a5/

[1] Gorbunov V. A., Algebraicheskaya teoriya kvazimnogoobrazii, Nauchnaya kniga, Novosibirsk, 1999 | Zbl

[2] Kravchenko A. V., “O reshetochnoi slozhnosti kvazimnogoobrazii grafov i endografov”, Algebra i logika, 36:3 (1997), 273–281 | MR | Zbl

[3] Kravchenko A. V., “$\mathcal Q$-Universalnye kvazimnogoobraziya grafov”, Algebra i logika, 41:3 (2002), 311–325 | MR | Zbl

[4] Tropnn M. P., “Vlozhimost svobodnoi reshetki v reshetku kvazimnogoobrazii distributivnykh reshetok s psevdodopolneniyami”, Algebra i logika, 22:2 (1983), 159–167 | MR

[5] Tumanov V. I., “O kvazimnogoobraziyakh reshetok”, XVI Vsesoyuz. algebraich. konf., Tez. dokl., ch. 2, L., 1981, 135

[6] Adams M. E., Dziobiak W., “Finite-to-finite universal quasivarieties are $Q$-universal”, Algebra Universalis, 46:1–2 (2001), 253–283 | DOI | MR | Zbl

[7] Dziobiak W., “On lattice identities satisfied in subquasivariety lattices of varieties of modular lattices”, Algebra Universalis, 22:2–3 (1986), 205–214 | DOI | MR | Zbl

[8] Hedrlin Z., Pultr A., “On full embeddings of categories of algebras”, Illinois J. Math., 10:3 (1966), 392–406 | MR | Zbl

[9] Pultr A., Sichler J., “Primitive classes of algebras with two unary idempotent operations, containing all algebraic categories as full subcategories”, Comment. Math. Univ. Carolin., 10:3 (1969), 425–445 | MR | Zbl

[10] Pultr A., Trnkova V., Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories, Academia, Prague, 1980 | MR

[11] Sheremet M. S., “Quasivarieties of Cantor algebras”, Algebra Universalis, 46:1–2 (2001), 193–201 | DOI | MR | Zbl

[12] Sichler J., “Concerning minimal primitive classes of algebras containing any category of algebras as a full subcategory”, Comm. Math. Univ. Carolin., 9:4 (1968), 627–635 | MR | Zbl