Complexity of Quasivariety Lattices for Varieties of Unary Algebras
Matematičeskie trudy, Tome 4 (2001) no. 2, pp. 113-127

Voir la notice de l'article provenant de la source Math-Net.Ru

With the help of the sufficient conditions of [1, 2] for $\mathcal Q$-universality we show that, for each $n\geqslant 2$, there exists a minimal $\mathcal Q$-universal variety of unary algebras with $n$ fundamental operations.
@article{MT_2001_4_2_a5,
     author = {A. V. Kravchenko},
     title = {Complexity of {Quasivariety} {Lattices} for {Varieties} of {Unary} {Algebras}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {113--127},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2001_4_2_a5/}
}
TY  - JOUR
AU  - A. V. Kravchenko
TI  - Complexity of Quasivariety Lattices for Varieties of Unary Algebras
JO  - Matematičeskie trudy
PY  - 2001
SP  - 113
EP  - 127
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2001_4_2_a5/
LA  - ru
ID  - MT_2001_4_2_a5
ER  - 
%0 Journal Article
%A A. V. Kravchenko
%T Complexity of Quasivariety Lattices for Varieties of Unary Algebras
%J Matematičeskie trudy
%D 2001
%P 113-127
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2001_4_2_a5/
%G ru
%F MT_2001_4_2_a5
A. V. Kravchenko. Complexity of Quasivariety Lattices for Varieties of Unary Algebras. Matematičeskie trudy, Tome 4 (2001) no. 2, pp. 113-127. http://geodesic.mathdoc.fr/item/MT_2001_4_2_a5/