Complexity of Quasivariety Lattices for Varieties of Unary Algebras
Matematičeskie trudy, Tome 4 (2001) no. 2, pp. 113-127
Voir la notice de l'article provenant de la source Math-Net.Ru
With the help of the sufficient conditions of [1, 2] for $\mathcal Q$-universality we show that, for each $n\geqslant 2$, there exists a minimal $\mathcal Q$-universal variety of unary algebras with $n$ fundamental operations.
@article{MT_2001_4_2_a5,
author = {A. V. Kravchenko},
title = {Complexity of {Quasivariety} {Lattices} for {Varieties} of {Unary} {Algebras}},
journal = {Matemati\v{c}eskie trudy},
pages = {113--127},
publisher = {mathdoc},
volume = {4},
number = {2},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2001_4_2_a5/}
}
A. V. Kravchenko. Complexity of Quasivariety Lattices for Varieties of Unary Algebras. Matematičeskie trudy, Tome 4 (2001) no. 2, pp. 113-127. http://geodesic.mathdoc.fr/item/MT_2001_4_2_a5/