Interpolation of Weighted Sobolev Spaces
Matematičeskie trudy, Tome 4 (2001) no. 1, pp. 122-173

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present article, we describe the spaces $\bigl(H_{p,\Psi}^m(\Omega),L_{p,\omega}(\Omega)\bigr)_{\theta,p}$, where the norms on $H_{p,\Psi}^m(\Omega)$ and on $L_{p,\omega}(\Omega)$ are defined as follows: \begin{align*} \|u\|_{H_{p,\Psi}^m(\Omega)}^p=\int_{\Omega}\sum_{|\alpha|\le m}\omega_{\alpha}\bigl|D^{\alpha}u(x)\bigr|^p\,dx, \\ \|u\|_{L_{p,\omega}(\Omega)}^p=\int_{\Omega}\omega(x)\bigl|u(x)\bigr|^p\,dx, \end{align*} with $\omega_{\alpha}$, $\omega$ continuous positive functions on $\Omega$. The results obtained are applicable to studying elliptic eigenvalue problems with an indefinite weight function.
@article{MT_2001_4_1_a7,
     author = {S. G. Pyatkov},
     title = {Interpolation of {Weighted} {Sobolev} {Spaces}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {122--173},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2001_4_1_a7/}
}
TY  - JOUR
AU  - S. G. Pyatkov
TI  - Interpolation of Weighted Sobolev Spaces
JO  - Matematičeskie trudy
PY  - 2001
SP  - 122
EP  - 173
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2001_4_1_a7/
LA  - ru
ID  - MT_2001_4_1_a7
ER  - 
%0 Journal Article
%A S. G. Pyatkov
%T Interpolation of Weighted Sobolev Spaces
%J Matematičeskie trudy
%D 2001
%P 122-173
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2001_4_1_a7/
%G ru
%F MT_2001_4_1_a7
S. G. Pyatkov. Interpolation of Weighted Sobolev Spaces. Matematičeskie trudy, Tome 4 (2001) no. 1, pp. 122-173. http://geodesic.mathdoc.fr/item/MT_2001_4_1_a7/