Interpolation of Weighted Sobolev Spaces
Matematičeskie trudy, Tome 4 (2001) no. 1, pp. 122-173.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present article, we describe the spaces $\bigl(H_{p,\Psi}^m(\Omega),L_{p,\omega}(\Omega)\bigr)_{\theta,p}$, where the norms on $H_{p,\Psi}^m(\Omega)$ and on $L_{p,\omega}(\Omega)$ are defined as follows: \begin{align*} \|u\|_{H_{p,\Psi}^m(\Omega)}^p=\int_{\Omega}\sum_{|\alpha|\le m}\omega_{\alpha}\bigl|D^{\alpha}u(x)\bigr|^p\,dx, \\ \|u\|_{L_{p,\omega}(\Omega)}^p=\int_{\Omega}\omega(x)\bigl|u(x)\bigr|^p\,dx, \end{align*} with $\omega_{\alpha}$, $\omega$ continuous positive functions on $\Omega$. The results obtained are applicable to studying elliptic eigenvalue problems with an indefinite weight function.
@article{MT_2001_4_1_a7,
     author = {S. G. Pyatkov},
     title = {Interpolation of {Weighted} {Sobolev} {Spaces}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {122--173},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2001_4_1_a7/}
}
TY  - JOUR
AU  - S. G. Pyatkov
TI  - Interpolation of Weighted Sobolev Spaces
JO  - Matematičeskie trudy
PY  - 2001
SP  - 122
EP  - 173
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2001_4_1_a7/
LA  - ru
ID  - MT_2001_4_1_a7
ER  - 
%0 Journal Article
%A S. G. Pyatkov
%T Interpolation of Weighted Sobolev Spaces
%J Matematičeskie trudy
%D 2001
%P 122-173
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2001_4_1_a7/
%G ru
%F MT_2001_4_1_a7
S. G. Pyatkov. Interpolation of Weighted Sobolev Spaces. Matematičeskie trudy, Tome 4 (2001) no. 1, pp. 122-173. http://geodesic.mathdoc.fr/item/MT_2001_4_1_a7/

[1] Besov O. V., “Vlozheniya prostranstv differentsiruemykh funktsii peremennoi gladkosti”, Tr. Mat. in-ta im. V. A. Steklova, 214, 1997, 25–58 | MR | Zbl

[2] Besov O. V., “Interpolyatsiya prostranstv differentsiruemykh funktsii na oblasti”, Tr. Mat. in-ta im. V. A. Steklova, 214, 1997, 59–82 | MR | Zbl

[3] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[4] Besov O. V., Kadlets Ya., Kufner A., “O nekotorykh svoistvakh vesovykh klassov”, Dokl. AN SSSR, 171:3 (1966), 914–916 | MR

[5] Burenkov V. I., Evans V. D., “Vesovoe neravenstvo Khardi dlya raznostei i polnaya nepreryvnost vlozheniya prostranstv Soboleva dlya oblastei so skol ugodno silnym vyrozhdeniem”, Dokl. RAN, 214:1 (1997), 7–24

[6] Kusainova L. K., “Teoremy vlozheniya anizotropnykh vesovykh prostranstv Soboleva”, Izv. vuzov. Matematika, 1988, no. 2(309), 36–45 | MR | Zbl

[7] Kusainova L. K., “Teoremy interpolyatsii v vesovykh prostranstvakh Soboleva”, Funktsionalnye prostranstva. Teoriya priblizhenii. Nelineinyi analiz, Mezhdunarodnaya konf.: Tez. dokl., M., 1995, 168–169

[8] Kusainova L. K., “Ob odnom neravenstve vlozheniya”, 9-ya Saratovskaya zimnyaya shkola, Izd-vo Saratovskogo un-ta, Saratov, 1998, 97–98

[9] Ladyzhenskaya O. A., Uraltseva H. H., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[10] Lizorkin P. I., Otelbaev M. O., “Teoremy vlozheniya i kompaktnosti dlya prostranstv Sobolevskogo tipa s vesami: Chast I”, Mam. sb., 108(150):3 (1979), 358–377 ; “Часть II”, Mam. сб., 112(154):1(5) (1980), 56–85 | MR | Zbl | MR | Zbl

[11] Otelbaev M. O., “Teoremy vlozheniya s vesom i ikh primenenie k izucheniyu spektra operatora Shredingera”, Tr. Mat. in-ta im. V. A. Steklova, 150, 1979, 265–305 | MR | Zbl

[12] Pyatkov S. G., “Indefinitnye ellipticheskie spektralnye zadachi”, Sib. mat. zhurn., 39:2 (1998), 409–426 | MR | Zbl

[13] Bastero J., Milman M., Ruiz F. J., “Calderon weights and the real interpolation method”, Rev. Mat. Univ. Complut. Madrid, 9, Spec. Iss. (1996), 73–89 | MR | Zbl

[14] Bergh J., Lofstrom J., Interpolation Spaces. An Introduction, Springer, Berlin; Heidelberg; New York, 1976 | MR | Zbl

[15] Bui Huy Qui, “Weighted Besov and Triebel spaces: interpolation by the real method”, Hiroshima Math. J., 12:3 (1982), 581–606 | MR

[16] Canale A., Caso L., Di Gironimo P., “Weighted norm inequalities on irregular domains”, Rend. Accad. Naz. Sei. XL Mem. Mat. (11), 16 (1992), 193–209 | MR | Zbl

[17] Caso L., Transirico M., “Some remarks on a class of weight functions”, Comment. Math. Univ. Carolin., 37:3 (1996), 469–477 | MR | Zbl

[18] Grisvard P., “Commutative de deux functeurs d'interpolation et applications”, J. Math. Pures Appl. (9), 45:2 (1966), 144–206

[19] Gurko P., Opic B., “$A_r$ condition for two weight functions and compact imbeddings of weighted Sobolev spaces”, Czechoslovak Math. J., 38 (1998), 133–150

[20] Kufner A., Simader G G., “Hardy inequalities for overdetermined classes of functions”, Z. Anal. Anwendungen., 16:2 (1997), 387–403 | MR | Zbl

[21] Lions J. L., Magenes E., Non-homogeneous Boundary Value Problems and Applications, V. 1, Springer-Verlag, Berlin; New York, 1972

[22] Mamedov F. I., Novruzov A. A., “On two weighted inequalities of Hardy–Sobolev type in unbounded domains”, Funktsionalnye prostranstva. Differentsialnye operatory. Problemy matematicheskogo obrazovaniya, Mezhdunarodnaya konf., posvyaschennaya 75-letiyu chl.-korr. RAN, prof. L. D. Kudryavtseva: Tez. dokl., M., 1998, 84

[23] Maz'ya V. G., Sobolev Spaces, Springer-Verlag, Berlin; New York, 1985 | MR

[24] Oinarov R., “On weighted norm inequalities with three weights”, J. London Math. Soc. (2), 48:1 (1993), 137–151 | DOI | MR

[25] Pyatkov S. G., “Elliptic eigenvalue problems with an indefinite weight function”, Siberian Adv. Math., 4:2 (1994), 87–127 | MR

[26] Pyatkov S. G., “Interpolation of some function spaces and indefinite Sturm–Liouville problems”, Oper. Theory Adv. Appl., 102 (1998), 179–200 | MR | Zbl

[27] Triebel H., Interpolation Theory, Function Spaces, Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978 | MR