On One Extremal Problem on the~Euclidean Plane
Matematičeskie trudy, Tome 4 (2001) no. 1, pp. 111-121.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given two intersecting congruent rectangles $P_1=ABCD$ and $P_2=EFGH$ in the Euclidean plane, let $L_1$ be the length of the part of the boundary $\partial P_1$ which lies in the interior $\operatorname{int}(P_2)$ of $P_2$ and similarly let $L_2$ be the length of the part of $\partial P_2$ which lies in the interior $\operatorname{int}(P_1)$ of $P_1$. The author solves J. W. Fickett's problem of validating the inequality $\frac13 L_1\le L_2\le 3L_1$.
@article{MT_2001_4_1_a6,
     author = {Yu. V. Nikonorova},
     title = {On {One} {Extremal} {Problem} on {the~Euclidean} {Plane}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {111--121},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2001_4_1_a6/}
}
TY  - JOUR
AU  - Yu. V. Nikonorova
TI  - On One Extremal Problem on the~Euclidean Plane
JO  - Matematičeskie trudy
PY  - 2001
SP  - 111
EP  - 121
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2001_4_1_a6/
LA  - ru
ID  - MT_2001_4_1_a6
ER  - 
%0 Journal Article
%A Yu. V. Nikonorova
%T On One Extremal Problem on the~Euclidean Plane
%J Matematičeskie trudy
%D 2001
%P 111-121
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2001_4_1_a6/
%G ru
%F MT_2001_4_1_a6
Yu. V. Nikonorova. On One Extremal Problem on the~Euclidean Plane. Matematičeskie trudy, Tome 4 (2001) no. 1, pp. 111-121. http://geodesic.mathdoc.fr/item/MT_2001_4_1_a6/

[1] Croft H. T., Falconer K. J., Guy R. K., Unsolved Problems in Geometry, Springer-Verlag, Berlin, etc., 1994 | MR | Zbl

[2] Fickett J. W., “Overlapping congruent convex bodies”, Amer. Math. Monthly, 87 (1980), 814–815 | DOI | MR | Zbl