On One Extremal Problem on the~Euclidean Plane
Matematičeskie trudy, Tome 4 (2001) no. 1, pp. 111-121
Voir la notice de l'article provenant de la source Math-Net.Ru
Given two intersecting congruent rectangles $P_1=ABCD$ and $P_2=EFGH$ in the Euclidean plane, let $L_1$ be the length of the part of the boundary $\partial P_1$ which lies in the interior $\operatorname{int}(P_2)$ of $P_2$ and similarly let $L_2$ be the length of the part of $\partial P_2$ which lies in the interior $\operatorname{int}(P_1)$ of $P_1$. The author solves J. W. Fickett's problem of validating the inequality $\frac13 L_1\le L_2\le 3L_1$.
@article{MT_2001_4_1_a6,
author = {Yu. V. Nikonorova},
title = {On {One} {Extremal} {Problem} on {the~Euclidean} {Plane}},
journal = {Matemati\v{c}eskie trudy},
pages = {111--121},
publisher = {mathdoc},
volume = {4},
number = {1},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2001_4_1_a6/}
}
Yu. V. Nikonorova. On One Extremal Problem on the~Euclidean Plane. Matematičeskie trudy, Tome 4 (2001) no. 1, pp. 111-121. http://geodesic.mathdoc.fr/item/MT_2001_4_1_a6/