Study of the~Range of Sums of a~Vector Series by Multiplying the~Rearrangements of a~Series by Real Numbers
Matematičeskie trudy, Tome 4 (2001) no. 1, pp. 36-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we consider a new notion connected with the problem of the range of sums of a series in an infinite-dimensional space, multiplication of a rearrangement of a series by a real number. We distinguish some set of rearrangements that admit multiplication by integers. If the sum of a series disturbs after applying one of these rearrangements then the range of sums is unbounded and we can indicate some elements in it. For some subset of rearrangements in this set we prove the impossibility of multiplying a rearrangement by nonintegral numbers.
@article{MT_2001_4_1_a3,
     author = {E. G. Lazareva},
     title = {Study of {the~Range} of {Sums} of {a~Vector} {Series} by {Multiplying} {the~Rearrangements} of {a~Series} by {Real} {Numbers}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {36--67},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2001_4_1_a3/}
}
TY  - JOUR
AU  - E. G. Lazareva
TI  - Study of the~Range of Sums of a~Vector Series by Multiplying the~Rearrangements of a~Series by Real Numbers
JO  - Matematičeskie trudy
PY  - 2001
SP  - 36
EP  - 67
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2001_4_1_a3/
LA  - ru
ID  - MT_2001_4_1_a3
ER  - 
%0 Journal Article
%A E. G. Lazareva
%T Study of the~Range of Sums of a~Vector Series by Multiplying the~Rearrangements of a~Series by Real Numbers
%J Matematičeskie trudy
%D 2001
%P 36-67
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2001_4_1_a3/
%G ru
%F MT_2001_4_1_a3
E. G. Lazareva. Study of the~Range of Sums of a~Vector Series by Multiplying the~Rearrangements of a~Series by Real Numbers. Matematičeskie trudy, Tome 4 (2001) no. 1, pp. 36-67. http://geodesic.mathdoc.fr/item/MT_2001_4_1_a3/

[1] Kadets V. M., Kadets M. I., Perestanovki ryadov v prostranstvakh Banakha, Izd-vo Tartusk. un-ta, Tartu, 1988 | MR

[2] Kornilov P. A., “O perestanovkakh uslovno skhodyaschikhsya funktsionalnykh ryadov”, Mat. sb., 113(155):4(12) (1980), 598–616 | MR | Zbl

[3] Kadec M. I., Wozniakowcki K., “On series whose permutations have only two sums”, Bull. Polish Acad. Sei. Math., 37:2 (1989), 15–21 | MR | Zbl

[4] Schaefer P., “Sum-preserving rearrangements of infinite series”, Amer. Math. Monthly, 88 (1981), 33–40 | DOI | MR | Zbl