Separable Conservativity
Matematičeskie trudy, Tome 4 (2001) no. 1, pp. 18-24
Cet article a éte moissonné depuis la source Math-Net.Ru
We introduce separable conservativity, a natural property of independent Boolean families of valuation rings. For families with this property, the validity of the geometric local-global principle implies the validity of a stronger principle, the arithmetic local-global principle.
@article{MT_2001_4_1_a1,
author = {Yu. L. Ershov},
title = {Separable {Conservativity}},
journal = {Matemati\v{c}eskie trudy},
pages = {18--24},
year = {2001},
volume = {4},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2001_4_1_a1/}
}
Yu. L. Ershov. Separable Conservativity. Matematičeskie trudy, Tome 4 (2001) no. 1, pp. 18-24. http://geodesic.mathdoc.fr/item/MT_2001_4_1_a1/
[1] Ershov Yu. L., Kratno normirovannye polya, Nauchnaya kniga, Novosibirsk, 2000
[2] Keisler G., Chen Ch. Ch., Teoriya modelei, Mir, M., 1977 | MR
[3] Ershov Y. L., “Projectivity of absolute Galois groups of $RC_\zeta^*$-fields”, Algebra, Proc. Ill Intern. Alg. Conf. (Krasnoyarsk), Walter de Gruyter, Berlin, New York, 1996, 63–80 | MR | Zbl