Separable Conservativity
Matematičeskie trudy, Tome 4 (2001) no. 1, pp. 18-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce separable conservativity, a natural property of independent Boolean families of valuation rings. For families with this property, the validity of the geometric local-global principle implies the validity of a stronger principle, the arithmetic local-global principle.
@article{MT_2001_4_1_a1,
     author = {Yu. L. Ershov},
     title = {Separable {Conservativity}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {18--24},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2001_4_1_a1/}
}
TY  - JOUR
AU  - Yu. L. Ershov
TI  - Separable Conservativity
JO  - Matematičeskie trudy
PY  - 2001
SP  - 18
EP  - 24
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2001_4_1_a1/
LA  - ru
ID  - MT_2001_4_1_a1
ER  - 
%0 Journal Article
%A Yu. L. Ershov
%T Separable Conservativity
%J Matematičeskie trudy
%D 2001
%P 18-24
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2001_4_1_a1/
%G ru
%F MT_2001_4_1_a1
Yu. L. Ershov. Separable Conservativity. Matematičeskie trudy, Tome 4 (2001) no. 1, pp. 18-24. http://geodesic.mathdoc.fr/item/MT_2001_4_1_a1/

[1] Ershov Yu. L., Kratno normirovannye polya, Nauchnaya kniga, Novosibirsk, 2000

[2] Keisler G., Chen Ch. Ch., Teoriya modelei, Mir, M., 1977 | MR

[3] Ershov Y. L., “Projectivity of absolute Galois groups of $RC_\zeta^*$-fields”, Algebra, Proc. Ill Intern. Alg. Conf. (Krasnoyarsk), Walter de Gruyter, Berlin, New York, 1996, 63–80 | MR | Zbl