The Central Limit Theorem for Generalized Canonical von~Mises Statistics
Matematičeskie trudy, Tome 4 (2001) no. 1, pp. 3-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the central limit theorem for normalized von Mises statistics based on an array of degenerate kernel functions.
@article{MT_2001_4_1_a0,
     author = {I. S. Borisov and L. A. Sakhanenko},
     title = {The {Central} {Limit} {Theorem} for {Generalized} {Canonical} {von~Mises} {Statistics}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {3--17},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2001_4_1_a0/}
}
TY  - JOUR
AU  - I. S. Borisov
AU  - L. A. Sakhanenko
TI  - The Central Limit Theorem for Generalized Canonical von~Mises Statistics
JO  - Matematičeskie trudy
PY  - 2001
SP  - 3
EP  - 17
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2001_4_1_a0/
LA  - ru
ID  - MT_2001_4_1_a0
ER  - 
%0 Journal Article
%A I. S. Borisov
%A L. A. Sakhanenko
%T The Central Limit Theorem for Generalized Canonical von~Mises Statistics
%J Matematičeskie trudy
%D 2001
%P 3-17
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2001_4_1_a0/
%G ru
%F MT_2001_4_1_a0
I. S. Borisov; L. A. Sakhanenko. The Central Limit Theorem for Generalized Canonical von~Mises Statistics. Matematičeskie trudy, Tome 4 (2001) no. 1, pp. 3-17. http://geodesic.mathdoc.fr/item/MT_2001_4_1_a0/

[1] Borisov I. S., “Approksimatsiya raspredelenii statistik Mizesa s mnogomernymi yadrami”, Sib. mat. zhurn., 32:4 (1991), 20–35 | MR | Zbl

[2] Gikhman I. I., Skorokhod A. B., Teoriya sluchainykh protsessov, t. 1, Nauka, M., 1971 | MR | Zbl

[3] Kolmogorov A. N., “Krivye v gilbertovom prostranstve, invariantnye po otnosheniyu k odnoparametricheskoi gruppe dvizhenii”, Dokl. AN SSSR, 26 (1940), 6–9 | Zbl

[4] Kolmogorov A. N., “Spiral Vinera i nekotorye drugie interesnye krivye v gilbertovom prostranstve”, Dokl. AN SSSR, 26 (1940), 115–118 | Zbl

[5] Kolmogorov A. N., “Statsionarnye posledovatelnosti v gilbertovom prostranstve”, Byull. MGU, 2:6 (1941), 1–40 | MR | Zbl

[6] Korolyuk V. S., Borovskikh Yu. V., Teoriya $U$-statistik, Nauk. dumka, Kiev, 1989 | MR

[7] Filippova A. A., “Teorema Mizesa o predelnom povedenii funktsionalov ot empiricheskikh funktsii raspredeleniya i ee statisticheskie primeneniya”, Teoriya veroyatnostei i ee primenenie, 7 (1962), 26–60 | MR

[8] Arcones M. A., Giné E., “Limit theorems for $U$-processes”, Ann. Probab., 21:3 (1993), 1494–1542 | DOI | MR | Zbl

[9] Arcones M. A., Giné E., “On the law of the iterated logarithm for canonical $U$-statistics and processes”, Stochastic Process. Appl., 58:2 (1995), 217–245 | DOI | MR | Zbl

[10] Cramér H., “On the theory of random processes”, Ann. Math., 41 (1940), 215–230 | DOI | MR | Zbl

[11] de la Reña V. H., “Decoupling and Khintchine's inequalities for $U$-statistics”, Ann. Probab., 20 (1992), 1877–1892 | DOI | MR

[12] de la Reña V. H., Montgomery-Smith S. J., Szulga J., “Contraction and decoupling inequalities for multilinear forms and $U$-statistics”, Ann. Probab., 22:4 (1994), 1745–1765 | DOI | MR

[13] Hoeffding W., “A class of statistics with asymptotically normal distribution”, Ann. Math. Statist., 19 (1948), 293–325 | DOI | MR | Zbl

[14] Hoeffding W., The strong law of large numbers for $U$-statistics, Univ. North Carolina Inst. Statist. Mirneo. Series, 302, 1961

[15] Itô K., “Multiple Wiener integral”, J. Math. Soc. Japan, 3 (1951), 157–169 | MR | Zbl

[16] Major P., Multiple Wiener-Itô integrals, Lecture Notes in Math., 849, Springer-Verlag, Berlin, etc., 1981 | MR | Zbl

[17] Major P., “Asymptotic distribution for weighted $U$-statistics”, Ann. Probab., 22:3 (1994), 1514–1535 | DOI | MR | Zbl

[18] von Mises R., “On the asymptotic distribution of differentiable statistical functions”, Ann. Math. Statist., 18 (1947), 309–348 | DOI | MR | Zbl

[19] Wiener N., “Differential space”, J. Math. Phys., 2 (1923), 131–179