Classification for the~ Actions of a~Compact Abelian Group on a~Semifinite Real $W^*$-Algebra
Matematičeskie trudy, Tome 3 (2000) no. 2, pp. 171-181
Voir la notice de l'article provenant de la source Math-Net.Ru
In this article, we study the actions of groups on real von Neumann algebras. A complete classification is obtained for the actions of arbitrary finite groups on hyperfinite real factors of type II$_1$. Using Takesaki's theorem for real von Neumann algebras, we classify (up to conjugacy) the actions of compact abelian groups on hyperfinite real factor of type II$_\infty$ in terms of cocycle-conjugacy of dual actions.
@article{MT_2000_3_2_a6,
author = {A. A. Rakhimov},
title = {Classification for the~ {Actions} of {a~Compact} {Abelian} {Group} on {a~Semifinite} {Real} $W^*${-Algebra}},
journal = {Matemati\v{c}eskie trudy},
pages = {171--181},
publisher = {mathdoc},
volume = {3},
number = {2},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2000_3_2_a6/}
}
A. A. Rakhimov. Classification for the~ Actions of a~Compact Abelian Group on a~Semifinite Real $W^*$-Algebra. Matematičeskie trudy, Tome 3 (2000) no. 2, pp. 171-181. http://geodesic.mathdoc.fr/item/MT_2000_3_2_a6/