Higman Numbers of Finite Groups
Matematičeskie trudy, Tome 3 (2000) no. 2, pp. 3-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, the relation is clarified between the units of character fields and the central units of integer group rings. The notion of the Higman number of a finite group is introduced and several ways of finding the Higman numbers are analyzed. For various field classes, we derive exponents of unit groups of factor rings of the integer ring by principal ideals generated by naturals. On this basis, we obtain some results on divisibility of the Higman numbers.
@article{MT_2000_3_2_a0,
     author = {R. Zh. Aleev},
     title = {Higman {Numbers} of {Finite} {Groups}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {3--28},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2000_3_2_a0/}
}
TY  - JOUR
AU  - R. Zh. Aleev
TI  - Higman Numbers of Finite Groups
JO  - Matematičeskie trudy
PY  - 2000
SP  - 3
EP  - 28
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2000_3_2_a0/
LA  - ru
ID  - MT_2000_3_2_a0
ER  - 
%0 Journal Article
%A R. Zh. Aleev
%T Higman Numbers of Finite Groups
%J Matematičeskie trudy
%D 2000
%P 3-28
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2000_3_2_a0/
%G ru
%F MT_2000_3_2_a0
R. Zh. Aleev. Higman Numbers of Finite Groups. Matematičeskie trudy, Tome 3 (2000) no. 2, pp. 3-28. http://geodesic.mathdoc.fr/item/MT_2000_3_2_a0/