Jordan D-Bialgebras and Symplectic Forms on Jordan Algebras
Matematičeskie trudy, Tome 3 (2000) no. 1, pp. 38-47
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that a symplectic structure determined on a Jordan algebra induces a symplectic structure on the adjoint Lie KKT-algebra. It is proven that Jordan bialgebras of some type defined on semisimple finite-dimensional Jordan algebras are triangular Jordan bialgebras.
@article{MT_2000_3_1_a1,
author = {V. N. Zhelyabin},
title = {Jordan {D-Bialgebras} and {Symplectic} {Forms} on {Jordan} {Algebras}},
journal = {Matemati\v{c}eskie trudy},
pages = {38--47},
publisher = {mathdoc},
volume = {3},
number = {1},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2000_3_1_a1/}
}
V. N. Zhelyabin. Jordan D-Bialgebras and Symplectic Forms on Jordan Algebras. Matematičeskie trudy, Tome 3 (2000) no. 1, pp. 38-47. http://geodesic.mathdoc.fr/item/MT_2000_3_1_a1/