Asymptotic Representation for the~Distributions of Sums of Weakly Dependent Variables
Matematičeskie trudy, Tome 2 (1999) no. 2, pp. 21-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present article, we study the asymptotic behavior of the distributions of sums of random variables from stationary sequences satisfying mixing conditions. We obtain a decomposition of the sums into the pairs of asymptotically independent components and deduce some well-known results in this field from the main theorems.
@article{MT_1999_2_2_a2,
     author = {S. A. Klokov},
     title = {Asymptotic {Representation} for {the~Distributions} of {Sums} of {Weakly} {Dependent} {Variables}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {21--56},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_1999_2_2_a2/}
}
TY  - JOUR
AU  - S. A. Klokov
TI  - Asymptotic Representation for the~Distributions of Sums of Weakly Dependent Variables
JO  - Matematičeskie trudy
PY  - 1999
SP  - 21
EP  - 56
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_1999_2_2_a2/
LA  - ru
ID  - MT_1999_2_2_a2
ER  - 
%0 Journal Article
%A S. A. Klokov
%T Asymptotic Representation for the~Distributions of Sums of Weakly Dependent Variables
%J Matematičeskie trudy
%D 1999
%P 21-56
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_1999_2_2_a2/
%G ru
%F MT_1999_2_2_a2
S. A. Klokov. Asymptotic Representation for the~Distributions of Sums of Weakly Dependent Variables. Matematičeskie trudy, Tome 2 (1999) no. 2, pp. 21-56. http://geodesic.mathdoc.fr/item/MT_1999_2_2_a2/