A Sufficient Condition for Order Boundedness of an Attractor for a Positive Mean Ergodic Operator in a Banach Lattice
Matematičeskie trudy, Tome 2 (1999) no. 2, pp. 3-11
Cet article a éte moissonné depuis la source Math-Net.Ru
We establish that a positive mean ergodic operator with a quasi-order-bounded attractor on a Banach lattice has an order-bounded attractor. This generalizes the recent result of F. Räbiger [1, Main Lemma 3.3] that was proven under the additional assumption that the operator in question is contractive. As an application, several theorems are established which generalize some results of [1–3].
@article{MT_1999_2_2_a0,
author = {S. G. Gorokhova and \`E. Yu. Emel'yanov},
title = {A {Sufficient} {Condition} for {Order} {Boundedness} of {an~Attractor} for {a~Positive} {Mean} {Ergodic} {Operator} in {a~Banach} {Lattice}},
journal = {Matemati\v{c}eskie trudy},
pages = {3--11},
year = {1999},
volume = {2},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_1999_2_2_a0/}
}
TY - JOUR AU - S. G. Gorokhova AU - È. Yu. Emel'yanov TI - A Sufficient Condition for Order Boundedness of an Attractor for a Positive Mean Ergodic Operator in a Banach Lattice JO - Matematičeskie trudy PY - 1999 SP - 3 EP - 11 VL - 2 IS - 2 UR - http://geodesic.mathdoc.fr/item/MT_1999_2_2_a0/ LA - ru ID - MT_1999_2_2_a0 ER -
%0 Journal Article %A S. G. Gorokhova %A È. Yu. Emel'yanov %T A Sufficient Condition for Order Boundedness of an Attractor for a Positive Mean Ergodic Operator in a Banach Lattice %J Matematičeskie trudy %D 1999 %P 3-11 %V 2 %N 2 %U http://geodesic.mathdoc.fr/item/MT_1999_2_2_a0/ %G ru %F MT_1999_2_2_a0
S. G. Gorokhova; È. Yu. Emel'yanov. A Sufficient Condition for Order Boundedness of an Attractor for a Positive Mean Ergodic Operator in a Banach Lattice. Matematičeskie trudy, Tome 2 (1999) no. 2, pp. 3-11. http://geodesic.mathdoc.fr/item/MT_1999_2_2_a0/