A Sufficient Condition for Order Boundedness of an~Attractor for a~Positive Mean Ergodic Operator in a~Banach Lattice
Matematičeskie trudy, Tome 2 (1999) no. 2, pp. 3-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish that a positive mean ergodic operator with a quasi-order-bounded attractor on a Banach lattice has an order-bounded attractor. This generalizes the recent result of F. Räbiger [1, Main Lemma 3.3] that was proven under the additional assumption that the operator in question is contractive. As an application, several theorems are established which generalize some results of [1–3].
@article{MT_1999_2_2_a0,
     author = {S. G. Gorokhova and \`E. Yu. Emel'yanov},
     title = {A {Sufficient} {Condition} for {Order} {Boundedness} of {an~Attractor} for {a~Positive} {Mean} {Ergodic} {Operator} in {a~Banach} {Lattice}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {3--11},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_1999_2_2_a0/}
}
TY  - JOUR
AU  - S. G. Gorokhova
AU  - È. Yu. Emel'yanov
TI  - A Sufficient Condition for Order Boundedness of an~Attractor for a~Positive Mean Ergodic Operator in a~Banach Lattice
JO  - Matematičeskie trudy
PY  - 1999
SP  - 3
EP  - 11
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_1999_2_2_a0/
LA  - ru
ID  - MT_1999_2_2_a0
ER  - 
%0 Journal Article
%A S. G. Gorokhova
%A È. Yu. Emel'yanov
%T A Sufficient Condition for Order Boundedness of an~Attractor for a~Positive Mean Ergodic Operator in a~Banach Lattice
%J Matematičeskie trudy
%D 1999
%P 3-11
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_1999_2_2_a0/
%G ru
%F MT_1999_2_2_a0
S. G. Gorokhova; È. Yu. Emel'yanov. A Sufficient Condition for Order Boundedness of an~Attractor for a~Positive Mean Ergodic Operator in a~Banach Lattice. Matematičeskie trudy, Tome 2 (1999) no. 2, pp. 3-11. http://geodesic.mathdoc.fr/item/MT_1999_2_2_a0/