On Limit Theorems for the~First Exit Time from a~Strip for Stochastic Processes.~II
Matematičeskie trudy, Tome 2 (1999) no. 1, pp. 121-139.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a stochastic process $\xi(t)$, $t\ge 0$, $\xi(0)=0$, with independent stationary increments. Let $\eta(t,a)$ be a stochastic process with delay at the boundary of the half-interval $[-a,\infty)$, $a\ge0$, i.e., $\eta(t,a)=\xi(t)-a-\min\left\{-a;\ \inf_{s\le t}\xi(s)\right\}$. Under some restrictions on $\xi(1)$, we obtain asymptotic expansions for the Laplace–Stieltjes transforms of the normed random variable $\theta(a,b)=\inf\bigl\{t:\eta(t,a)\ge b\bigr\}$ as $b\to\infty$. The cases $\mathbb E\,\xi(1)=0$ and $\mathbb E\,\xi(1)0$ are considered and the situations $a=\mathrm{const}$, $b\to\infty$; $a\to\infty$, $b\to\infty$; and $a\to\infty$, $b=\mathrm{const}$ are treated separately.
@article{MT_1999_2_1_a3,
     author = {V. I. Lotov and V. R. Khodzhibaev},
     title = {On {Limit} {Theorems} for {the~First} {Exit} {Time} from {a~Strip} for {Stochastic} {Processes.~II}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {121--139},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_1999_2_1_a3/}
}
TY  - JOUR
AU  - V. I. Lotov
AU  - V. R. Khodzhibaev
TI  - On Limit Theorems for the~First Exit Time from a~Strip for Stochastic Processes.~II
JO  - Matematičeskie trudy
PY  - 1999
SP  - 121
EP  - 139
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_1999_2_1_a3/
LA  - ru
ID  - MT_1999_2_1_a3
ER  - 
%0 Journal Article
%A V. I. Lotov
%A V. R. Khodzhibaev
%T On Limit Theorems for the~First Exit Time from a~Strip for Stochastic Processes.~II
%J Matematičeskie trudy
%D 1999
%P 121-139
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_1999_2_1_a3/
%G ru
%F MT_1999_2_1_a3
V. I. Lotov; V. R. Khodzhibaev. On Limit Theorems for the~First Exit Time from a~Strip for Stochastic Processes.~II. Matematičeskie trudy, Tome 2 (1999) no. 1, pp. 121-139. http://geodesic.mathdoc.fr/item/MT_1999_2_1_a3/