On Limit Theorems for the~First Exit Time from a~Strip for Stochastic Processes.~II
Matematičeskie trudy, Tome 2 (1999) no. 1, pp. 121-139
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a stochastic process $\xi(t)$, $t\ge 0$, $\xi(0)=0$, with independent stationary increments. Let $\eta(t,a)$ be a stochastic process with delay at the boundary of the half-interval $[-a,\infty)$, $a\ge0$, i.e., $\eta(t,a)=\xi(t)-a-\min\left\{-a;\ \inf_{s\le t}\xi(s)\right\}$. Under some restrictions on $\xi(1)$, we obtain asymptotic expansions for the Laplace–Stieltjes transforms of the normed random variable $\theta(a,b)=\inf\bigl\{t:\eta(t,a)\ge b\bigr\}$ as $b\to\infty$. The cases $\mathbb E\,\xi(1)=0$ and $\mathbb E\,\xi(1)0$ are considered and the situations $a=\mathrm{const}$, $b\to\infty$; $a\to\infty$, $b\to\infty$; and $a\to\infty$, $b=\mathrm{const}$ are treated separately.
@article{MT_1999_2_1_a3,
author = {V. I. Lotov and V. R. Khodzhibaev},
title = {On {Limit} {Theorems} for {the~First} {Exit} {Time} from {a~Strip} for {Stochastic} {Processes.~II}},
journal = {Matemati\v{c}eskie trudy},
pages = {121--139},
publisher = {mathdoc},
volume = {2},
number = {1},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_1999_2_1_a3/}
}
TY - JOUR AU - V. I. Lotov AU - V. R. Khodzhibaev TI - On Limit Theorems for the~First Exit Time from a~Strip for Stochastic Processes.~II JO - Matematičeskie trudy PY - 1999 SP - 121 EP - 139 VL - 2 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_1999_2_1_a3/ LA - ru ID - MT_1999_2_1_a3 ER -
V. I. Lotov; V. R. Khodzhibaev. On Limit Theorems for the~First Exit Time from a~Strip for Stochastic Processes.~II. Matematičeskie trudy, Tome 2 (1999) no. 1, pp. 121-139. http://geodesic.mathdoc.fr/item/MT_1999_2_1_a3/