Near Regularly-Prüfer Rings
Matematičeskie trudy, Tome 2 (1999) no. 1, pp. 72-120 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present article, we construct the theory of near Boolean families of valuation rings which extends the corresponding theory for Boolean families. We establish the fact that the local-global principle (LGP) for such families is effectively elementary. We indicate sufficient conditions for 1-embeddability of holomorphy rings of near Boolean families that possess the LGP property. By way of application, we prove that the elementary theory of the ring of integrably totally $p$-adic integers and the elementary theory of the class of all closed subrings of almost all algebraic numbers are decidable.
@article{MT_1999_2_1_a2,
     author = {Yu. L. Ershov},
     title = {Near {Regularly-Pr\"ufer} {Rings}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {72--120},
     year = {1999},
     volume = {2},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_1999_2_1_a2/}
}
TY  - JOUR
AU  - Yu. L. Ershov
TI  - Near Regularly-Prüfer Rings
JO  - Matematičeskie trudy
PY  - 1999
SP  - 72
EP  - 120
VL  - 2
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MT_1999_2_1_a2/
LA  - ru
ID  - MT_1999_2_1_a2
ER  - 
%0 Journal Article
%A Yu. L. Ershov
%T Near Regularly-Prüfer Rings
%J Matematičeskie trudy
%D 1999
%P 72-120
%V 2
%N 1
%U http://geodesic.mathdoc.fr/item/MT_1999_2_1_a2/
%G ru
%F MT_1999_2_1_a2
Yu. L. Ershov. Near Regularly-Prüfer Rings. Matematičeskie trudy, Tome 2 (1999) no. 1, pp. 72-120. http://geodesic.mathdoc.fr/item/MT_1999_2_1_a2/