The~Shapley Functional and Polar Forms of Homogeneous Polynomial Games
Matematičeskie trudy, Tome 1 (1998) no. 2, pp. 24-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present article, we study the generalized Owen extension for infinite cooperative games of bounded polynomial variation. The study of this extension and the corresponding polar forms is carried out in the framework of the theory of semiordered K-spaces. The main result of the article consists in establishing interrelations between the Shapley functional and the polar forms of homogeneous games.
@article{MT_1998_1_2_a1,
     author = {V. A. Vasil'ev},
     title = {The~Shapley {Functional} and {Polar} {Forms} of {Homogeneous} {Polynomial} {Games}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {24--67},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_1998_1_2_a1/}
}
TY  - JOUR
AU  - V. A. Vasil'ev
TI  - The~Shapley Functional and Polar Forms of Homogeneous Polynomial Games
JO  - Matematičeskie trudy
PY  - 1998
SP  - 24
EP  - 67
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_1998_1_2_a1/
LA  - ru
ID  - MT_1998_1_2_a1
ER  - 
%0 Journal Article
%A V. A. Vasil'ev
%T The~Shapley Functional and Polar Forms of Homogeneous Polynomial Games
%J Matematičeskie trudy
%D 1998
%P 24-67
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_1998_1_2_a1/
%G ru
%F MT_1998_1_2_a1
V. A. Vasil'ev. The~Shapley Functional and Polar Forms of Homogeneous Polynomial Games. Matematičeskie trudy, Tome 1 (1998) no. 2, pp. 24-67. http://geodesic.mathdoc.fr/item/MT_1998_1_2_a1/