The Shapley Functional and Polar Forms of Homogeneous Polynomial Games
Matematičeskie trudy, Tome 1 (1998) no. 2, pp. 24-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present article, we study the generalized Owen extension for infinite cooperative games of bounded polynomial variation. The study of this extension and the corresponding polar forms is carried out in the framework of the theory of semiordered K-spaces. The main result of the article consists in establishing interrelations between the Shapley functional and the polar forms of homogeneous games.
@article{MT_1998_1_2_a1,
     author = {V. A. Vasil'ev},
     title = {The~Shapley {Functional} and {Polar} {Forms} of {Homogeneous} {Polynomial} {Games}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {24--67},
     year = {1998},
     volume = {1},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_1998_1_2_a1/}
}
TY  - JOUR
AU  - V. A. Vasil'ev
TI  - The Shapley Functional and Polar Forms of Homogeneous Polynomial Games
JO  - Matematičeskie trudy
PY  - 1998
SP  - 24
EP  - 67
VL  - 1
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MT_1998_1_2_a1/
LA  - ru
ID  - MT_1998_1_2_a1
ER  - 
%0 Journal Article
%A V. A. Vasil'ev
%T The Shapley Functional and Polar Forms of Homogeneous Polynomial Games
%J Matematičeskie trudy
%D 1998
%P 24-67
%V 1
%N 2
%U http://geodesic.mathdoc.fr/item/MT_1998_1_2_a1/
%G ru
%F MT_1998_1_2_a1
V. A. Vasil'ev. The Shapley Functional and Polar Forms of Homogeneous Polynomial Games. Matematičeskie trudy, Tome 1 (1998) no. 2, pp. 24-67. http://geodesic.mathdoc.fr/item/MT_1998_1_2_a1/