A Conditional Stability Theorem in the Problem of Determining the Dispersion Index and Relaxation for the Stationary Transport Equation
Matematičeskie trudy, Tome 1 (1998) no. 1, pp. 78-115
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the problem of determining the relaxation $\sigma(x)$, $x\in\mathbb R^3$, and the dispersion index $K(x,\nu\cdot\nu')$ of the transport equation. As information for determining them, we specify emanating radiation on the boundary of a physical domain which is a function of a point on the boundary, the angular variables $\theta_0$ and $\varphi_0$ defining the acute-directed radiation incident on the boundary, and the angular variables $\theta$ and $\varphi$ defining the direction of emanating radiation. Assuming that the functions $\sigma(x)$ and $K(x,z)$ are small, we establish a stability estimate for a solution to this problem.
@article{MT_1998_1_1_a3,
author = {V. G. Romanov},
title = {A {Conditional} {Stability} {Theorem} in {the~Problem} of {Determining} {the~Dispersion} {Index} and {Relaxation} for {the~Stationary} {Transport} {Equation}},
journal = {Matemati\v{c}eskie trudy},
pages = {78--115},
year = {1998},
volume = {1},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_1998_1_1_a3/}
}
TY - JOUR AU - V. G. Romanov TI - A Conditional Stability Theorem in the Problem of Determining the Dispersion Index and Relaxation for the Stationary Transport Equation JO - Matematičeskie trudy PY - 1998 SP - 78 EP - 115 VL - 1 IS - 1 UR - http://geodesic.mathdoc.fr/item/MT_1998_1_1_a3/ LA - ru ID - MT_1998_1_1_a3 ER -
%0 Journal Article %A V. G. Romanov %T A Conditional Stability Theorem in the Problem of Determining the Dispersion Index and Relaxation for the Stationary Transport Equation %J Matematičeskie trudy %D 1998 %P 78-115 %V 1 %N 1 %U http://geodesic.mathdoc.fr/item/MT_1998_1_1_a3/ %G ru %F MT_1998_1_1_a3
V. G. Romanov. A Conditional Stability Theorem in the Problem of Determining the Dispersion Index and Relaxation for the Stationary Transport Equation. Matematičeskie trudy, Tome 1 (1998) no. 1, pp. 78-115. http://geodesic.mathdoc.fr/item/MT_1998_1_1_a3/