О линейной топологической классификации пространств неприрывных функций в топологии поточечной сходимости
Matematičeskij sbornik, Tome 181 (1991) no. 5, pp. 705-718
Voir la notice de l'article provenant de la source European Digital Mathematics Library
Mots-clés :
continuous real-valued functions, topology of pointwise convergence, Euclidean-resolvable compactum, polyhedron, noncompact CW-spaces of countable weight, factorizations, $ℓ $-equivalence, -equivalence
@article{MS_1991__181_5_a3,
author = {{\CYRA}.{\CYRV}. {\CYRA}{\cyrr}{\cyrh}{\cyra}{\cyrn}{\cyrg}{\cyre}{\cyrl}{\cyrsftsn}{\cyrs}{\cyrk}{\cyri}{\cyrishrt}},
title = {{\CYRO} {\cyrl}{\cyri}{\cyrn}{\cyre}{\cyrishrt}{\cyrn}{\cyro}{\cyrishrt} {\cyrt}{\cyro}{\cyrp}{\cyro}{\cyrl}{\cyro}{\cyrg}{\cyri}{\cyrch}{\cyre}{\cyrs}{\cyrk}{\cyro}{\cyrishrt} {\cyrk}{\cyrl}{\cyra}{\cyrs}{\cyrs}{\cyri}{\cyrf}{\cyri}{\cyrk}{\cyra}{\cyrc}{\cyri}{\cyri} {\cyrp}{\cyrr}{\cyro}{\cyrs}{\cyrt}{\cyrr}{\cyra}{\cyrn}{\cyrs}{\cyrt}{\cyrv} {\cyrn}{\cyre}{\cyrp}{\cyrr}{\cyri}{\cyrr}{\cyrery}{\cyrv}{\cyrn}{\cyrery}{\cyrh} {\cyrf}{\cyru}{\cyrn}{\cyrk}{\cyrc}{\cyri}{\cyrishrt} {\cyrv} {\cyrt}{\cyro}{\cyrp}{\cyro}{\cyrl}{\cyro}{\cyrg}{\cyri}{\cyri} {\cyrp}{\cyro}{\cyrt}{\cyro}{\cyrch}{\cyre}{\cyrch}{\cyrn}{\cyro}{\cyrishrt} {\cyrs}{\cyrh}{\cyro}{\cyrd}{\cyri}{\cyrm}{\cyro}{\cyrs}{\cyrt}{\cyri}},
journal = {Matemati\v{c}eskij sbornik},
pages = {705--718},
publisher = {mathdoc},
volume = {181},
number = {5},
year = {1991},
zbl = {0733.46009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MS_1991__181_5_a3/}
}
TY - JOUR AU - А.В. Архангельский TI - О линейной топологической классификации пространств неприрывных функций в топологии поточечной сходимости JO - Matematičeskij sbornik PY - 1991 SP - 705 EP - 718 VL - 181 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MS_1991__181_5_a3/ LA - ru ID - MS_1991__181_5_a3 ER -
А.В. Архангельский. О линейной топологической классификации пространств неприрывных функций в топологии поточечной сходимости. Matematičeskij sbornik, Tome 181 (1991) no. 5, pp. 705-718. http://geodesic.mathdoc.fr/item/MS_1991__181_5_a3/