Универсальные менгеровские компакты и универсальные отображения
Matematičeskij sbornik, Tome 171 (1987) no. 1, pp. 121-139
Cet article a éte moissonné depuis la source European Digital Mathematics Library
Mots-clés :
Q-manifold, n-soft map, universal Menger n-dimensional compactum, Hilbert cube, at most n-dimensional separable metric spaces, softness conditions, $LC^{n-1}$-compactum, n-dimensional Menger manifold, AR(n)-space, stabilization theorem, triangulation theorem, absolute extensors, nonmetrizable case, -compactum
@article{MS_1987__171_1_a1,
author = {{\CYRA}.{\CYRN}. {\CYRD}{\cyrr}{\cyra}{\cyrn}{\cyri}{\cyrsh}{\cyrn}{\cyri}{\cyrk}{\cyro}{\cyrv}},
title = {{\CYRU}{\cyrn}{\cyri}{\cyrv}{\cyre}{\cyrr}{\cyrs}{\cyra}{\cyrl}{\cyrsftsn}{\cyrn}{\cyrery}{\cyre} {\cyrm}{\cyre}{\cyrn}{\cyrg}{\cyre}{\cyrr}{\cyro}{\cyrv}{\cyrs}{\cyrk}{\cyri}{\cyre} {\cyrk}{\cyro}{\cyrm}{\cyrp}{\cyra}{\cyrk}{\cyrt}{\cyrery} {\cyri} {\cyru}{\cyrn}{\cyri}{\cyrv}{\cyre}{\cyrr}{\cyrs}{\cyra}{\cyrl}{\cyrsftsn}{\cyrn}{\cyrery}{\cyre} {\cyro}{\cyrt}{\cyro}{\cyrb}{\cyrr}{\cyra}{\cyrzh}{\cyre}{\cyrn}{\cyri}{\cyrya}},
journal = {Matemati\v{c}eskij sbornik},
pages = {121--139},
year = {1987},
volume = {171},
number = {1},
zbl = {0622.54026},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MS_1987__171_1_a1/}
}
А.Н. Дранишников. Универсальные менгеровские компакты и универсальные отображения. Matematičeskij sbornik, Tome 171 (1987) no. 1, pp. 121-139. http://geodesic.mathdoc.fr/item/MS_1987__171_1_a1/