и по мере
Voir la notice de l'article provenant de la source European Digital Mathematics Library
@article{MS_1986__168_1_a1, author = {{\CYRA}.{\CYRA}. {\CYRT}{\cyra}{\cyrl}{\cyra}{\cyrl}{\cyrya}{\cyrn}}, title = {{\CYRO} {\cyre}{\cyrd}{\cyri}{\cyrn}{\cyrs}{\cyrt}{\cyrv}{\cyre}{\cyrn}{\cyrn}{\cyro}{\cyrs}{\cyrt}{\cyri} {\cyrr}{\cyrya}{\cyrd}{\cyro}{\cyrv} {{\CYRH}{\cyra}{\cyra}{\cyrr}{\cyra},} {\cyrs}{\cyrh}{\cyro}{\cyrd}{\cyrya}{\cyrshch}{\cyri}{\cyrh}{\cyrs}{\cyrya} {\cyrv} {\cyrm}{\cyre}{\cyrt}{\cyrr}{\cyri}{\cyrk}{\cyra}{\cyrh} $L_p[0,1]$, $0<p<1$ {\cyri} {\cyrp}{\cyro} {\cyrm}{\cyre}{\cyrr}{\cyre}}, journal = {Matemati\v{c}eskij sbornik}, pages = {101--114}, publisher = {mathdoc}, volume = {168}, number = {1}, year = {1986}, zbl = {0603.42025}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MS_1986__168_1_a1/} }
А.А. Талалян. О единственности рядов Хаара, сходящихся в метриках $L_p[0,1]$, $0<p<1$ и по мере. Matematičeskij sbornik, Tome 168 (1986) no. 1, pp. 101-114. http://geodesic.mathdoc.fr/item/MS_1986__168_1_a1/