Неабелево многообразие решеточно упорядоченных групп, в котором каждая разрешимая $ℓ$-группа абелева
Matematičeskij sbornik, Tome 168 (1985) no. 2, pp. 247-266.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : linearly ordered groups, o-approximable $ℓ$-groups, variety of $ℓ$- groups, solvable $ℓ$-groups, minimal cover, lattice of varieties of $ℓ$-groups, o-approximable -groups, variety of - groups, solvable -groups, lattice of varieties of -groups
@article{MS_1985__168_2_a4,
     author = {{\CYRV}.{\CYRM}. {\CYRK}{\cyro}{\cyrp}{\cyrery}{\cyrt}{\cyro}{\cyrv}},
     title = {{\CYRN}{\cyre}{\cyra}{\cyrb}{\cyre}{\cyrl}{\cyre}{\cyrv}{\cyro} {\cyrm}{\cyrn}{\cyro}{\cyrg}{\cyro}{\cyro}{\cyrb}{\cyrr}{\cyra}{\cyrz}{\cyri}{\cyre} {\cyrr}{\cyre}{\cyrsh}{\cyre}{\cyrt}{\cyro}{\cyrch}{\cyrn}{\cyro} {\cyru}{\cyrp}{\cyro}{\cyrr}{\cyrya}{\cyrd}{\cyro}{\cyrch}{\cyre}{\cyrn}{\cyrn}{\cyrery}{\cyrh} {\cyrg}{\cyrr}{\cyru}{\cyrp}{\cyrp}, {\cyrv} {\cyrk}{\cyro}{\cyrt}{\cyro}{\cyrr}{\cyro}{\cyrm} {\cyrk}{\cyra}{\cyrzh}{\cyrd}{\cyra}{\cyrya} {\cyrr}{\cyra}{\cyrz}{\cyrr}{\cyre}{\cyrsh}{\cyri}{\cyrm}{\cyra}{\cyrya} $\ensuremath{\ell}$-{\cyrg}{\cyrr}{\cyru}{\cyrp}{\cyrp}{\cyra} {\cyra}{\cyrb}{\cyre}{\cyrl}{\cyre}{\cyrv}{\cyra}},
     journal = {Matemati\v{c}eskij sbornik},
     pages = {247--266},
     publisher = {mathdoc},
     volume = {168},
     number = {2},
     year = {1985},
     zbl = {0574.06012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MS_1985__168_2_a4/}
}
TY  - JOUR
AU  - В.М. Копытов
TI  - Неабелево многообразие решеточно упорядоченных групп, в котором каждая разрешимая $ℓ$-группа абелева
JO  - Matematičeskij sbornik
PY  - 1985
SP  - 247
EP  - 266
VL  - 168
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MS_1985__168_2_a4/
LA  - ru
ID  - MS_1985__168_2_a4
ER  - 
%0 Journal Article
%A В.М. Копытов
%T Неабелево многообразие решеточно упорядоченных групп, в котором каждая разрешимая $ℓ$-группа абелева
%J Matematičeskij sbornik
%D 1985
%P 247-266
%V 168
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MS_1985__168_2_a4/
%G ru
%F MS_1985__168_2_a4
В.М. Копытов. Неабелево многообразие решеточно упорядоченных групп, в котором каждая разрешимая $ℓ$-группа абелева. Matematičeskij sbornik, Tome 168 (1985) no. 2, pp. 247-266. http://geodesic.mathdoc.fr/item/MS_1985__168_2_a4/