Voir la notice de l'article provenant de la source European Digital Mathematics Library
@article{MS_1982__160_3_a5, author = {{\CYRV}.{\CYRI}. {\CYRM}{\cyre}{\cyrl}{\cyrsftsn}{\cyrn}{\cyri}{\cyrk}}, title = {{\CYRT}{\cyra}{\cyru}{\cyrb}{\cyre}{\cyrr}{\cyro}{\cyrv}{\cyrery} {\cyrt}{\cyre}{\cyro}{\cyrr}{\cyre}{\cyrm}{\cyrery} {\cyrs} {\cyro}{\cyrs}{\cyrt}{\cyra}{\cyrt}{\cyrk}{\cyro}{\cyrm} {\cyrd}{\cyrl}{\cyrya} {\cyrp}{\cyrr}{\cyre}{\cyro}{\cyrb}{\cyrr}{\cyra}{\cyrz}{\cyro}{\cyrv}{\cyra}{\cyrn}{\cyri}{\cyrya} {{\CYRL}{\cyra}{\cyrp}{\cyrl}{\cyra}{\cyrs}{\cyra}} {\cyrv} {\cyrp}{\cyrl}{\cyro}{\cyrs}{\cyrk}{\cyro}{\cyrs}{\cyrt}{\cyri}}, journal = {Matemati\v{c}eskij sbornik}, pages = {411--421}, publisher = {mathdoc}, volume = {160}, number = {3}, year = {1982}, zbl = {0506.44003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MS_1982__160_3_a5/} }
В.И. Мельник. Тауберовы теоремы с остатком для преобразования Лапласа в плоскости. Matematičeskij sbornik, Tome 160 (1982) no. 3, pp. 411-421. http://geodesic.mathdoc.fr/item/MS_1982__160_3_a5/