Экспоненциально сходящися метод решения уравнения Лапласа на многоугольниках
Matematičeskij sbornik, Tome 151 (1979) no. 3, pp. 323-354
Voir la notice de l'article provenant de la source European Digital Mathematics Library
Mots-clés :
approximation method, mixed boundary value problem, Laplace equation in a general polygon
@article{MS_1979__151_3_a0,
author = {{\CYRE}.{\CYRA}. {\CYRV}{\cyro}{\cyrl}{\cyrk}{\cyro}{\cyrv}},
title = {{\CYREREV}{\cyrk}{\cyrs}{\cyrp}{\cyro}{\cyrn}{\cyre}{\cyrn}{\cyrc}{\cyri}{\cyra}{\cyrl}{\cyrsftsn}{\cyrn}{\cyro} {\cyrs}{\cyrh}{\cyro}{\cyrd}{\cyrya}{\cyrshch}{\cyri}{\cyrs}{\cyrya} {\cyrm}{\cyre}{\cyrt}{\cyro}{\cyrd} {\cyrr}{\cyre}{\cyrsh}{\cyre}{\cyrn}{\cyri}{\cyrya} {\cyru}{\cyrr}{\cyra}{\cyrv}{\cyrn}{\cyre}{\cyrn}{\cyri}{\cyrya} {{\CYRL}{\cyra}{\cyrp}{\cyrl}{\cyra}{\cyrs}{\cyra}} {\cyrn}{\cyra} {\cyrm}{\cyrn}{\cyro}{\cyrg}{\cyro}{\cyru}{\cyrg}{\cyro}{\cyrl}{\cyrsftsn}{\cyrn}{\cyri}{\cyrk}{\cyra}{\cyrh}},
journal = {Matemati\v{c}eskij sbornik},
pages = {323--354},
publisher = {mathdoc},
volume = {151},
number = {3},
year = {1979},
zbl = {0418.35034},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MS_1979__151_3_a0/}
}
Е.А. Волков. Экспоненциально сходящися метод решения уравнения Лапласа на многоугольниках. Matematičeskij sbornik, Tome 151 (1979) no. 3, pp. 323-354. http://geodesic.mathdoc.fr/item/MS_1979__151_3_a0/