Voir la notice de l'article provenant de la source European Digital Mathematics Library
@article{MS_1966__112_4_a7, author = {{\CYRA}.{\CYRV}. {\CYRCH}{\cyre}{\cyrr}{\cyrn}{\cyra}{\cyrv}{\cyrs}{\cyrk}{\cyri}{\cyrishrt}}, title = {{\CYRG}{\cyro}{\cyrm}{\cyre}{\cyro}{\cyrm}{\cyro}{\cyrr}{\cyrf}{\cyru}{\cyrz}{\cyrm}{\cyrery} $R^n$ are $k$-{\cyrs}{\cyrt}{\cyra}{\cyrb}{\cyri}{\cyrl}{\cyrsftsn}{\cyrn}{\cyrery} {\cyrp}{\cyrr}{\cyri} $k\ensuremath{\leq} n-3$.}, journal = {Matemati\v{c}eskij sbornik}, pages = {605--606}, publisher = {mathdoc}, volume = {112}, number = {4}, year = {1966}, zbl = {0183.28304}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MS_1966__112_4_a7/} }
А.В. Чернавский. Гомеоморфузмы $R^n$ are $k$-стабильны при $k≤ n-3$.. Matematičeskij sbornik, Tome 112 (1966) no. 4, pp. 605-606. http://geodesic.mathdoc.fr/item/MS_1966__112_4_a7/