Voir la notice de l'article provenant de la source European Digital Mathematics Library
@article{MS_1956__82_1_a0, author = {{\CYRM}.{\CYRSH}. {\CYRF}{\cyrl}{\cyre}{\cyrk}{\cyrs}{\cyre}{\cyrr}}, title = {{\CYRO} {\cyrs}{\cyrp}{\cyre}{\cyrk}{\cyrt}{\cyrr}{\cyra}{\cyrl}{\cyrsftsn}{\cyrn}{\cyro}{\cyrishrt} {\cyrf}{\cyru}{\cyrn}{\cyrk}{\cyrc}{\cyri}{\cyri} {\cyro}{\cyrp}{\cyre}{\cyrr}{\cyra}{\cyrt}{\cyro}{\cyrr}{\cyra} $- \sum ^3_{i,k=1} {\partial {\o}ver \partial x_i} \ensuremath{\leq}ft[ a_{ik} (x_1, x_2, x_3) {\partial u {\o}ver \partial x_k} + c(x_1, x_2, x_3) u$}, journal = {Matemati\v{c}eskij sbornik}, pages = {3--22}, publisher = {mathdoc}, volume = {82}, number = {1}, year = {1956}, zbl = {0071.31803}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MS_1956__82_1_a0/} }
TY - JOUR AU - М.Ш. Флексер TI - О спектральной функции оператора $- \sum ^3_{i,k=1} {\partial øver \partial x_i} ≤ft[ a_{ik} (x_1, x_2, x_3) {\partial u øver \partial x_k} + c(x_1, x_2, x_3) u$ JO - Matematičeskij sbornik PY - 1956 SP - 3 EP - 22 VL - 82 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MS_1956__82_1_a0/ LA - ru ID - MS_1956__82_1_a0 ER -
%0 Journal Article %A М.Ш. Флексер %T О спектральной функции оператора $- \sum ^3_{i,k=1} {\partial øver \partial x_i} ≤ft[ a_{ik} (x_1, x_2, x_3) {\partial u øver \partial x_k} + c(x_1, x_2, x_3) u$ %J Matematičeskij sbornik %D 1956 %P 3-22 %V 82 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MS_1956__82_1_a0/ %G ru %F MS_1956__82_1_a0
М.Ш. Флексер. О спектральной функции оператора $- \sum ^3_{i,k=1} {\partial øver \partial x_i} ≤ft[ a_{ik} (x_1, x_2, x_3) {\partial u øver \partial x_k} + c(x_1, x_2, x_3) u$. Matematičeskij sbornik, Tome 82 (1956) no. 1, pp. 3-22. http://geodesic.mathdoc.fr/item/MS_1956__82_1_a0/