The Space of Lebesgue Measurable Functions on the Interval [0,1] is Homeomorphic to the Countable Infinite Product of Lines.
Mathematica Scandinavica, Tome 27 (1970), pp. 132-140
Cet article a éte moissonné depuis la source European Digital Mathematics Library
@article{MS2_1970__27_166151,
author = {C. Bessaga and A. Pelczynski},
title = {The {Space} of {Lebesgue} {Measurable} {Functions} on the {Interval} [0,1] is {Homeomorphic} to the {Countable} {Infinite} {Product} of {Lines.}},
journal = {Mathematica Scandinavica},
pages = {132--140},
year = {1970},
volume = {27},
zbl = {0215.19804},
url = {http://geodesic.mathdoc.fr/item/MS2_1970__27_166151/}
}
TY - JOUR AU - C. Bessaga AU - A. Pelczynski TI - The Space of Lebesgue Measurable Functions on the Interval [0,1] is Homeomorphic to the Countable Infinite Product of Lines. JO - Mathematica Scandinavica PY - 1970 SP - 132 EP - 140 VL - 27 UR - http://geodesic.mathdoc.fr/item/MS2_1970__27_166151/ ID - MS2_1970__27_166151 ER -
%0 Journal Article %A C. Bessaga %A A. Pelczynski %T The Space of Lebesgue Measurable Functions on the Interval [0,1] is Homeomorphic to the Countable Infinite Product of Lines. %J Mathematica Scandinavica %D 1970 %P 132-140 %V 27 %U http://geodesic.mathdoc.fr/item/MS2_1970__27_166151/ %F MS2_1970__27_166151
C. Bessaga; A. Pelczynski. The Space of Lebesgue Measurable Functions on the Interval [0,1] is Homeomorphic to the Countable Infinite Product of Lines.. Mathematica Scandinavica, Tome 27 (1970), pp. 132-140. http://geodesic.mathdoc.fr/item/MS2_1970__27_166151/