Voir la notice de l'article provenant de la source European Digital Mathematics Library
@article{MS2_1970__27_166151, author = {C. Bessaga and A. Pelczynski}, title = {The {Space} of {Lebesgue} {Measurable} {Functions} on the {Interval} [0,1] is {Homeomorphic} to the {Countable} {Infinite} {Product} of {Lines.}}, journal = {Mathematica Scandinavica}, pages = {132--140}, publisher = {mathdoc}, volume = {27}, year = {1970}, zbl = {0215.19804}, url = {http://geodesic.mathdoc.fr/item/MS2_1970__27_166151/} }
TY - JOUR AU - C. Bessaga AU - A. Pelczynski TI - The Space of Lebesgue Measurable Functions on the Interval [0,1] is Homeomorphic to the Countable Infinite Product of Lines. JO - Mathematica Scandinavica PY - 1970 SP - 132 EP - 140 VL - 27 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MS2_1970__27_166151/ ID - MS2_1970__27_166151 ER -
%0 Journal Article %A C. Bessaga %A A. Pelczynski %T The Space of Lebesgue Measurable Functions on the Interval [0,1] is Homeomorphic to the Countable Infinite Product of Lines. %J Mathematica Scandinavica %D 1970 %P 132-140 %V 27 %I mathdoc %U http://geodesic.mathdoc.fr/item/MS2_1970__27_166151/ %F MS2_1970__27_166151
C. Bessaga; A. Pelczynski. The Space of Lebesgue Measurable Functions on the Interval [0,1] is Homeomorphic to the Countable Infinite Product of Lines.. Mathematica Scandinavica, Tome 27 (1970), pp. 132-140. http://geodesic.mathdoc.fr/item/MS2_1970__27_166151/