The Space of Lebesgue Measurable Functions on the Interval [0,1] is Homeomorphic to the Countable Infinite Product of Lines.
Mathematica Scandinavica, Tome 27 (1970), pp. 132-140.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

@article{MS2_1970__27_166151,
     author = {C. Bessaga and A. Pelczynski},
     title = {The {Space} of {Lebesgue} {Measurable} {Functions} on the {Interval} [0,1] is {Homeomorphic} to the {Countable} {Infinite} {Product} of {Lines.}},
     journal = {Mathematica Scandinavica},
     pages = {132--140},
     publisher = {mathdoc},
     volume = {27},
     year = {1970},
     zbl = {0215.19804},
     url = {http://geodesic.mathdoc.fr/item/MS2_1970__27_166151/}
}
TY  - JOUR
AU  - C. Bessaga
AU  - A. Pelczynski
TI  - The Space of Lebesgue Measurable Functions on the Interval [0,1] is Homeomorphic to the Countable Infinite Product of Lines.
JO  - Mathematica Scandinavica
PY  - 1970
SP  - 132
EP  - 140
VL  - 27
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MS2_1970__27_166151/
ID  - MS2_1970__27_166151
ER  - 
%0 Journal Article
%A C. Bessaga
%A A. Pelczynski
%T The Space of Lebesgue Measurable Functions on the Interval [0,1] is Homeomorphic to the Countable Infinite Product of Lines.
%J Mathematica Scandinavica
%D 1970
%P 132-140
%V 27
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MS2_1970__27_166151/
%F MS2_1970__27_166151
C. Bessaga; A. Pelczynski. The Space of Lebesgue Measurable Functions on the Interval [0,1] is Homeomorphic to the Countable Infinite Product of Lines.. Mathematica Scandinavica, Tome 27 (1970), pp. 132-140. http://geodesic.mathdoc.fr/item/MS2_1970__27_166151/