Σφαιρικές Αρμονικές Συναρτήσεις - Μια παρουσίαση ορισμένων αποτελεσμάτων που συχνά διαφευγουν της προσοχής μας
Μαθηματική Επιθεώρηση, Tome 60 (2003), pp. 31-40
Cet article a éte moissonné depuis la source Hellenic Digital Mathematics Library
@article{MR_2003_60_a2,
author = {I. Po\ensuremath{\acute\upsilon}\ensuremath{\sigma}\ensuremath{\sigma}o\ensuremath{\varsigma}},
title = {\ensuremath{\Sigma}\ensuremath{\varphi}\ensuremath{\alpha}\ensuremath{\iota}\ensuremath{\rho}\ensuremath{\iota}\ensuremath{\kappa}\ensuremath{\acute\epsilon}\ensuremath{\varsigma} {A\ensuremath{\rho}\ensuremath{\mu}o\ensuremath{\nu}\ensuremath{\iota}\ensuremath{\kappa}\ensuremath{\acute\epsilon}\ensuremath{\varsigma}} {\ensuremath{\Sigma}\ensuremath{\upsilon}\ensuremath{\nu}\ensuremath{\alpha}\ensuremath{\rho}\ensuremath{\tau}\ensuremath{\acute\eta}\ensuremath{\sigma}\ensuremath{\varepsilon}\ensuremath{\iota}\ensuremath{\varsigma}} - {M\ensuremath{\iota}\ensuremath{\alpha}} \ensuremath{\pi}\ensuremath{\alpha}\ensuremath{\rho}o\ensuremath{\upsilon}\ensuremath{\sigma}\ensuremath{\acute\iota}\ensuremath{\alpha}\ensuremath{\sigma}\ensuremath{\eta} o\ensuremath{\rho}\ensuremath{\iota}\ensuremath{\sigma}\ensuremath{\mu}\ensuremath{\acute\epsilon}\ensuremath{\nu}\ensuremath{\omega}\ensuremath{\nu} \ensuremath{\alpha}\ensuremath{\pi}o\ensuremath{\tau}\ensuremath{\varepsilon}\ensuremath{\lambda}\ensuremath{\varepsilon}\ensuremath{\sigma}\ensuremath{\mu}\ensuremath{\acute\alpha}\ensuremath{\tau}\ensuremath{\omega}\ensuremath{\nu} \ensuremath{\pi}o\ensuremath{\upsilon} \ensuremath{\sigma}\ensuremath{\upsilon}\ensuremath{\chi}\ensuremath{\nu}\ensuremath{\acute\alpha} \ensuremath{\delta}\ensuremath{\iota}\ensuremath{\alpha}\ensuremath{\varphi}\ensuremath{\varepsilon}\ensuremath{\upsilon}\ensuremath{\gamma}o\ensuremath{\upsilon}\ensuremath{\nu} \ensuremath{\tau}\ensuremath{\eta}\ensuremath{\varsigma} \ensuremath{\pi}\ensuremath{\rho}o\ensuremath{\sigma}o\ensuremath{\chi}\ensuremath{\acute\eta}\ensuremath{\varsigma} \ensuremath{\mu}\ensuremath{\alpha}\ensuremath{\varsigma}},
journal = {M\ensuremath{\alpha}\ensuremath{\theta}\ensuremath{\eta}\ensuremath{\mu}\ensuremath{\alpha}\ensuremath{\tau}\ensuremath{\iota}\ensuremath{\kappa}\ensuremath{\acute\eta} E\ensuremath{\pi}\ensuremath{\iota}\ensuremath{\theta}\ensuremath{\varepsilon}\ensuremath{\acute\omega}\ensuremath{\rho}\ensuremath{\eta}\ensuremath{\sigma}\ensuremath{\eta}},
pages = {31--40},
year = {2003},
volume = {60},
language = {gr},
url = {http://geodesic.mathdoc.fr/item/MR_2003_60_a2/}
}
Ι. Ρούσσος. Σφαιρικές Αρμονικές Συναρτήσεις - Μια παρουσίαση ορισμένων αποτελεσμάτων που συχνά διαφευγουν της προσοχής μας. Μαθηματική Επιθεώρηση, Tome 60 (2003), pp. 31-40. http://geodesic.mathdoc.fr/item/MR_2003_60_a2/