Μια διακριτή ημι-ροή στο χώρο των ακολουθιών και μελέτη σύγκλισης ακολουθιών που ορίζονται με αναδρομικό τύπο.
Μαθηματική Επιθεώρηση, Tome 36 (1989), pp. 66-74
Cet article a éte moissonné depuis la source Hellenic Digital Mathematics Library
@article{MR_1989_36_a15,
author = {\ensuremath{\Gamma}\ensuremath{\varepsilon}\ensuremath{\acute\omega}\ensuremath{\rho}\ensuremath{\gamma}\ensuremath{\iota}o\ensuremath{\varsigma} K\ensuremath{\alpha}\ensuremath{\rho}\ensuremath{\alpha}\ensuremath{\kappa}\ensuremath{\acute\omega}\ensuremath{\sigma}\ensuremath{\tau}\ensuremath{\alpha}\ensuremath{\varsigma}},
title = {M\ensuremath{\iota}\ensuremath{\alpha} \ensuremath{\delta}\ensuremath{\iota}\ensuremath{\alpha}\ensuremath{\kappa}\ensuremath{\rho}\ensuremath{\iota}\ensuremath{\tau}\ensuremath{\acute\eta} \ensuremath{\eta}\ensuremath{\mu}\ensuremath{\iota}-\ensuremath{\rho}o\ensuremath{\acute\eta} \ensuremath{\sigma}\ensuremath{\tau}o \ensuremath{\chi}\ensuremath{\acute\omega}\ensuremath{\rho}o \ensuremath{\tau}\ensuremath{\omega}\ensuremath{\nu} \ensuremath{\alpha}\ensuremath{\kappa}o\ensuremath{\lambda}o\ensuremath{\upsilon}\ensuremath{\theta}\ensuremath{\iota}\ensuremath{\acute\omega}\ensuremath{\nu} \ensuremath{\kappa}\ensuremath{\alpha}\ensuremath{\iota} \ensuremath{\mu}\ensuremath{\varepsilon}\ensuremath{\lambda}\ensuremath{\acute\epsilon}\ensuremath{\tau}\ensuremath{\eta} \ensuremath{\sigma}\ensuremath{\acute\upsilon}\ensuremath{\gamma}\ensuremath{\kappa}\ensuremath{\lambda}\ensuremath{\iota}\ensuremath{\sigma}\ensuremath{\eta}\ensuremath{\varsigma} \ensuremath{\alpha}\ensuremath{\kappa}o\ensuremath{\lambda}o\ensuremath{\upsilon}\ensuremath{\theta}\ensuremath{\iota}\ensuremath{\acute\omega}\ensuremath{\nu} \ensuremath{\pi}o\ensuremath{\upsilon} o\ensuremath{\rho}\ensuremath{\acute\iota}\ensuremath{\zeta}o\ensuremath{\nu}\ensuremath{\tau}\ensuremath{\alpha}\ensuremath{\iota} \ensuremath{\mu}\ensuremath{\varepsilon} \ensuremath{\alpha}\ensuremath{\nu}\ensuremath{\alpha}\ensuremath{\delta}\ensuremath{\rho}o\ensuremath{\mu}\ensuremath{\iota}\ensuremath{\kappa}\'{o} \ensuremath{\tau}\ensuremath{\acute\upsilon}\ensuremath{\pi}o.},
journal = {M\ensuremath{\alpha}\ensuremath{\theta}\ensuremath{\eta}\ensuremath{\mu}\ensuremath{\alpha}\ensuremath{\tau}\ensuremath{\iota}\ensuremath{\kappa}\ensuremath{\acute\eta} E\ensuremath{\pi}\ensuremath{\iota}\ensuremath{\theta}\ensuremath{\varepsilon}\ensuremath{\acute\omega}\ensuremath{\rho}\ensuremath{\eta}\ensuremath{\sigma}\ensuremath{\eta}},
pages = {66--74},
year = {1989},
volume = {36},
language = {gr},
url = {http://geodesic.mathdoc.fr/item/MR_1989_36_a15/}
}
Γεώργιος Καρακώστας. Μια διακριτή ημι-ροή στο χώρο των ακολουθιών και μελέτη σύγκλισης ακολουθιών που ορίζονται με αναδρομικό τύπο.. Μαθηματική Επιθεώρηση, Tome 36 (1989), pp. 66-74. http://geodesic.mathdoc.fr/item/MR_1989_36_a15/