En ε-uniformly convergent non-conforming finite element method for a singularly perturbed elliptic problem in two dimensions
Μαθηματική Επιθεώρηση, Tome 31 (1986), pp. 91-101
Cet article a éte moissonné depuis la source Hellenic Digital Mathematics Library
@article{MR_1986_31_a6,
author = {J. J. H. Miller and S. Wang},
title = {En \ensuremath{\varepsilon}-uniformly convergent non-conforming finite element method for a singularly perturbed elliptic problem in two dimensions},
journal = {M\ensuremath{\alpha}\ensuremath{\theta}\ensuremath{\eta}\ensuremath{\mu}\ensuremath{\alpha}\ensuremath{\tau}\ensuremath{\iota}\ensuremath{\kappa}\ensuremath{\acute\eta} E\ensuremath{\pi}\ensuremath{\iota}\ensuremath{\theta}\ensuremath{\varepsilon}\ensuremath{\acute\omega}\ensuremath{\rho}\ensuremath{\eta}\ensuremath{\sigma}\ensuremath{\eta}},
pages = {91--101},
year = {1986},
volume = {31},
language = {gr},
url = {http://geodesic.mathdoc.fr/item/MR_1986_31_a6/}
}
TY - JOUR AU - J. J. H. Miller AU - S. Wang TI - En ε-uniformly convergent non-conforming finite element method for a singularly perturbed elliptic problem in two dimensions JO - Μαθηματική Επιθεώρηση PY - 1986 SP - 91 EP - 101 VL - 31 UR - http://geodesic.mathdoc.fr/item/MR_1986_31_a6/ LA - gr ID - MR_1986_31_a6 ER -
J. J. H. Miller ; S. Wang. En ε-uniformly convergent non-conforming finite element method for a singularly perturbed elliptic problem in two dimensions. Μαθηματική Επιθεώρηση, Tome 31 (1986), pp. 91-101. http://geodesic.mathdoc.fr/item/MR_1986_31_a6/