Ρητοί αριθμοί σε σύστημα αρίθμησης με βάση ρ (ακέραιος>1)
Μαθηματική Επιθεώρηση, Tome 9 (1978), pp. 76-107
Cet article a éte moissonné depuis la source Hellenic Digital Mathematics Library
@article{MR_1978_9_a3,
author = {\'{}A. \ensuremath{\Phi}\ensuremath{\varepsilon}\ensuremath{\rho}\ensuremath{\varepsilon}\ensuremath{\nu}\ensuremath{\tau}\ensuremath{\acute\iota}\ensuremath{\nu}o\ensuremath{\upsilon}-N\ensuremath{\iota}\ensuremath{\kappa}o\ensuremath{\lambda}\ensuremath{\alpha}\ensuremath{\kappa}o\ensuremath{\pi}o\ensuremath{\acute\upsilon}\ensuremath{\lambda}o\ensuremath{\upsilon}},
title = {P\ensuremath{\eta}\ensuremath{\tau}o\ensuremath{\acute\iota} \ensuremath{\alpha}\ensuremath{\rho}\ensuremath{\iota}\ensuremath{\theta}\ensuremath{\mu}o\ensuremath{\acute\iota} \ensuremath{\sigma}\ensuremath{\varepsilon} \ensuremath{\sigma}\ensuremath{\acute\upsilon}\ensuremath{\sigma}\ensuremath{\tau}\ensuremath{\eta}\ensuremath{\mu}\ensuremath{\alpha} \ensuremath{\alpha}\ensuremath{\rho}\ensuremath{\acute\iota}\ensuremath{\theta}\ensuremath{\mu}\ensuremath{\eta}\ensuremath{\sigma}\ensuremath{\eta}\ensuremath{\varsigma} \ensuremath{\mu}\ensuremath{\varepsilon} \ensuremath{\beta}\ensuremath{\acute\alpha}\ensuremath{\sigma}\ensuremath{\eta} \ensuremath{\rho} (\ensuremath{\alpha}\ensuremath{\kappa}\ensuremath{\acute\epsilon}\ensuremath{\rho}\ensuremath{\alpha}\ensuremath{\iota}o\ensuremath{\varsigma}>1)},
journal = {M\ensuremath{\alpha}\ensuremath{\theta}\ensuremath{\eta}\ensuremath{\mu}\ensuremath{\alpha}\ensuremath{\tau}\ensuremath{\iota}\ensuremath{\kappa}\ensuremath{\acute\eta} E\ensuremath{\pi}\ensuremath{\iota}\ensuremath{\theta}\ensuremath{\varepsilon}\ensuremath{\acute\omega}\ensuremath{\rho}\ensuremath{\eta}\ensuremath{\sigma}\ensuremath{\eta}},
pages = {76--107},
year = {1978},
volume = {9},
language = {gr},
url = {http://geodesic.mathdoc.fr/item/MR_1978_9_a3/}
}
Ά. Φερεντίνου-Νικολακοπούλου. Ρητοί αριθμοί σε σύστημα αρίθμησης με βάση ρ (ακέραιος>1). Μαθηματική Επιθεώρηση, Tome 9 (1978), pp. 76-107. http://geodesic.mathdoc.fr/item/MR_1978_9_a3/