Η επιμεριστική ιδιότητα του πολλαπλασιασμού
Μαθηματική Επιθεώρηση, Tome 1 (1974), pp. 18-19
Cet article a éte moissonné depuis la source Hellenic Digital Mathematics Library
@article{MR_1974_1_a39,
author = { },
title = {H \ensuremath{\varepsilon}\ensuremath{\pi}\ensuremath{\iota}\ensuremath{\mu}\ensuremath{\varepsilon}\ensuremath{\rho}\ensuremath{\iota}\ensuremath{\sigma}\ensuremath{\tau}\ensuremath{\iota}\ensuremath{\kappa}\ensuremath{\acute\eta} \ensuremath{\iota}\ensuremath{\delta}\ensuremath{\iota}\'{o}\ensuremath{\tau}\ensuremath{\eta}\ensuremath{\tau}\ensuremath{\alpha} \ensuremath{\tau}o\ensuremath{\upsilon} \ensuremath{\pi}o\ensuremath{\lambda}\ensuremath{\lambda}\ensuremath{\alpha}\ensuremath{\pi}\ensuremath{\lambda}\ensuremath{\alpha}\ensuremath{\sigma}\ensuremath{\iota}\ensuremath{\alpha}\ensuremath{\sigma}\ensuremath{\mu}o\ensuremath{\acute\upsilon}},
journal = {M\ensuremath{\alpha}\ensuremath{\theta}\ensuremath{\eta}\ensuremath{\mu}\ensuremath{\alpha}\ensuremath{\tau}\ensuremath{\iota}\ensuremath{\kappa}\ensuremath{\acute\eta} E\ensuremath{\pi}\ensuremath{\iota}\ensuremath{\theta}\ensuremath{\varepsilon}\ensuremath{\acute\omega}\ensuremath{\rho}\ensuremath{\eta}\ensuremath{\sigma}\ensuremath{\eta}},
pages = {18--19},
year = {1974},
volume = {1},
language = {gr},
url = {http://geodesic.mathdoc.fr/item/MR_1974_1_a39/}
}
. Η επιμεριστική ιδιότητα του πολλαπλασιασμού. Μαθηματική Επιθεώρηση, Tome 1 (1974), pp. 18-19. http://geodesic.mathdoc.fr/item/MR_1974_1_a39/