Non-classical symmetries and reductions of algebraic equations and systems of equations
Matematičeskoe obrazovanie, no. 2 (2024), pp. 22-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Non-classical symmetries and reductions of algebraic equations and systems of algebraic equations are considered. Transformations that preserve the form of some algebraic equations, as well as transformations that reduce the order of these equations, are described.
@article{MO_2024_2_a3,
     author = {A. D. Polyanin and I. K. Shingareva},
     title = {Non-classical symmetries and reductions of algebraic equations and systems of equations},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {22--34},
     year = {2024},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2024_2_a3/}
}
TY  - JOUR
AU  - A. D. Polyanin
AU  - I. K. Shingareva
TI  - Non-classical symmetries and reductions of algebraic equations and systems of equations
JO  - Matematičeskoe obrazovanie
PY  - 2024
SP  - 22
EP  - 34
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MO_2024_2_a3/
LA  - ru
ID  - MO_2024_2_a3
ER  - 
%0 Journal Article
%A A. D. Polyanin
%A I. K. Shingareva
%T Non-classical symmetries and reductions of algebraic equations and systems of equations
%J Matematičeskoe obrazovanie
%D 2024
%P 22-34
%N 2
%U http://geodesic.mathdoc.fr/item/MO_2024_2_a3/
%G ru
%F MO_2024_2_a3
A. D. Polyanin; I. K. Shingareva. Non-classical symmetries and reductions of algebraic equations and systems of equations. Matematičeskoe obrazovanie, no. 2 (2024), pp. 22-34. http://geodesic.mathdoc.fr/item/MO_2024_2_a3/

[1] H. W. Turnbull, Theory of Equations, Oliver and Boyd, Edinburgh, 1947 | MR

[2] B. L. Van der Waerden, A History of Algebra: From Al-Khwarizmi to Emmy Noether, Springer, Berlin, 1985 | MR | Zbl

[3] S. G. Gindikin, Rasskazy o fizikakh i matematikakh, 3-e izd., MTsNMO, M., 2001

[4] I. N. Bronshtein, K. A. Semendyaev, Spravochnik po matematike dlya inzhenerov i uchaschikhsya vtuzov, Nauka, M., 1980

[5] G. Korn, T. Korn, Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov, Nauka, M., 1984

[6] A. D. Polyanin, A. V. Manzhirov, Handbook of Mathematics for Engineers and Scientists, Chapman Hall/CRC Press, Boca Raton–London, 2007 | MR | Zbl

[7] M. D. Yacoub, G. A. Fraidenraich, “A solution to the quartic equation”, The Mathematical Gazette, 96:536 (2012), 271–275 | DOI

[8] F. T. Tehrani, G. Leversha, “A simple approach to solving cubic equations”, The Mathematical Gazette, 100:548 (2016), 225–232 | DOI | MR | Zbl

[9] M. Cháves-Pichardo, M. A. Martínez-Crus, A. Trejo-Martínez, A. B. Vega-Crus, T. Arenas-Resendis, “On the practicality of the analytical solutions for all third- and fourth-degree algebraic equations with real coefficients”, Mathematics, 11:6 (2023), 1447 | DOI

[10] A. Ya. Belov, “Ob odnom sposobe reshat uravneniya chetvertoi stepeni”, Matematicheskoe obrazovanie, 2023, no. 3 (107), 24–26

[11] B. Sobirov, “Sposob resheniya uravnenii 4-i stepeni s pomoschyu simmetrii”, Matematicheskoe obrazovanie, 2023, no. 3 (107), 35–37

[12] V. M. Siadat, A. Tholen, “Omar Khayyam: Geometric Algebra and Cubic Equations”, Math Horizons, 28:1 (2021), 12–15 | DOI | MR

[13] D. J. Struik (ed.), A Source Book in Mathematics: 1200–1800, Princeton University Press, Princeton, 1986 | MR | Zbl

[14] R. B. King, Beyond the Quartic Equation, Birkhäuser, Boston, 1996 | MR | Zbl

[15] A. D. Polyanin, Handbook of Exact Solutions to Mathematical Equations, CRC Press, Boca Raton, 2024, 376 pp.

[16] V. G. Boltyanskii, N. Ya. Vilenkin, Simmetriya v algebre, 2-e izd., Nauka, M., 2002