Some qualitative methods in the course of ordinary differential equations
Matematičeskoe obrazovanie, no. 1 (2024), pp. 22-29
Cet article a éte moissonné depuis la source Math-Net.Ru
Qualitative methods for studying the behavior at infinity of solutions to a fourth-order nonlinear differential equation with exponential nonlinearity are considered.
@article{MO_2024_1_a3,
author = {A. V. Neklyudov},
title = {Some qualitative methods in the course of ordinary differential equations},
journal = {Matemati\v{c}eskoe obrazovanie},
pages = {22--29},
year = {2024},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MO_2024_1_a3/}
}
A. V. Neklyudov. Some qualitative methods in the course of ordinary differential equations. Matematičeskoe obrazovanie, no. 1 (2024), pp. 22-29. http://geodesic.mathdoc.fr/item/MO_2024_1_a3/
[1] A. F. Filippov, Vvedenie v teoriyu differentsialnykh uravnenii, URSS, M., 2022
[2] R. Bellman, Teoriya ustoichivosti reshenii differentsialnykh uravneni, URSS, M., 2003
[3] E. Mitidieri, S. I. Pokhozhaev, “Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh”, Trudy Matematicheskogo instituta imeni V. A. Steklova, 234 (2001), 3–383