@article{MO_2023_4_a1,
author = {M. A. Gorelov},
title = {A new look at an old problem},
journal = {Matemati\v{c}eskoe obrazovanie},
pages = {10--22},
year = {2023},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MO_2023_4_a1/}
}
M. A. Gorelov. A new look at an old problem. Matematičeskoe obrazovanie, no. 4 (2023), pp. 10-22. http://geodesic.mathdoc.fr/item/MO_2023_4_a1/
[1] A. G. Khovanskii, Malochleny, Fazis, M., 1996, 217 pp. | MR
[2] G. Polia, G. Sege, Zadachi i teoremy iz analiza, v. II, Nauka, M., 1978, 431 pp. | MR
[3] M. A. Gorelov, “Pravilo Dekarta”, Kvant, 2005, no. 3, 40–43 ; 61–62
[4] M. A. Gorelov, “Neravenstva i ... parallelnyi perenos”, Kvant, 2009, no. 2, 41–45
[5] M. A. Gorelov, “O polze grafikov”, Kvant, 2010, no. 3, 44–47
[6] M. A. Gorelov, “Printsip simmetrii v zadachakh optimizatsii”, Matematicheskoe prosveschenie, 28, MTsNMO, M., 2021, 165–198
[7] V. B. Lidskii, L. V. Ovsyannikov, A. N. Tulaikov, M. I. Shabunin, Zadachi po elementarnoi matematike, Nauka, M., 1968, 416 pp.
[8] N. B. Alfutova, A. V. Ustinov, Algebra i teoriya chisel. Sbornik zadach dlya matematicheskikh shkol, MTsNMO, M., 2002, 264 pp.
[9] E. Bakaev, “Obobschenie teoremy Pompeyu”, Kvant, 2017, no. 1, 39–42