A method for solving a 4th degree equations using symmetry
Matematičeskoe obrazovanie, no. 3 (2023), pp. 35-37
Cet article a éte moissonné depuis la source Math-Net.Ru
The note outlines a method for solving a 4th degree equation by reducing it to a reciprocal one. It turns out that for this, as in the case of the classical Ferrari method, it is enough to solve an auxiliary cubic equation.
@article{MO_2023_3_a5,
author = {B. Sobirov},
title = {A method for solving a 4th degree equations using symmetry},
journal = {Matemati\v{c}eskoe obrazovanie},
pages = {35--37},
year = {2023},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MO_2023_3_a5/}
}
B. Sobirov. A method for solving a 4th degree equations using symmetry. Matematičeskoe obrazovanie, no. 3 (2023), pp. 35-37. http://geodesic.mathdoc.fr/item/MO_2023_3_a5/
[1] V. B. Alekseev, Teorema Abelya v zadachakh i resheniyakh, MTsNMO, M., 2001
[2] S. L. Tabachnikov, D. B. Fuks, Matematicheskii divertisment, MTsNMO, M., 2011