Some non-standard logic problems
Matematičeskoe obrazovanie, no. 3 (2023), pp. 27-34
Cet article a éte moissonné depuis la source Math-Net.Ru
Participants in the competition are asked to solve a system of three equations with three unknowns of the form $A_1=ab+c$, $A_2=ac+b$, $A_3=bc+a$, where $a$, $b$, $c$ — unknowns taking natural values greater than 1. The participants know only one of the numbers on the left sides of the equations, $A_1$, $A_2$, $A_3$, as well as the results of the survey of participants by the presenter. Five problems are formulated and solved with a complete analysis of the solution. Algorithms for solving these problems are proposed.
@article{MO_2023_3_a4,
author = {G. A. Oganesyan and E. M. Dzhambetov and A. Ya. Belov},
title = {Some non-standard logic problems},
journal = {Matemati\v{c}eskoe obrazovanie},
pages = {27--34},
year = {2023},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MO_2023_3_a4/}
}
G. A. Oganesyan; E. M. Dzhambetov; A. Ya. Belov. Some non-standard logic problems. Matematičeskoe obrazovanie, no. 3 (2023), pp. 27-34. http://geodesic.mathdoc.fr/item/MO_2023_3_a4/
[1] S. Artemov, Yu. Gimatov, V. Fedorov, “Mnogo bitov iz nichego”, Kvant, 1977, no. 3
[2] I. F. Sharygin, Otkuda berutsya zadachi?, Kvant, 1991, no. 8, 42–48
[3] A. Ya. Belov, E. M. Dzhambetov, Kh. S. Taramova, Reshenie olimpiadnykh zadach po matematike. Uchebnoe posobie, Izdatelstvo ALEF, Groznyi-Makhachkala, 2020