Some “non-standard” equality of triangles signs
Matematičeskoe obrazovanie, no. 3 (2023), pp. 14-23
Cet article a éte moissonné depuis la source Math-Net.Ru
The article talks about obtaining non-standard signs of equality of triangles using a combination of constructive and analytical approaches.
@article{MO_2023_3_a2,
author = {R. A. Akberdin and A. A. Kostina},
title = {Some {\textquotedblleft}non-standard{\textquotedblright} equality of triangles signs},
journal = {Matemati\v{c}eskoe obrazovanie},
pages = {14--23},
year = {2023},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MO_2023_3_a2/}
}
R. A. Akberdin; A. A. Kostina. Some “non-standard” equality of triangles signs. Matematičeskoe obrazovanie, no. 3 (2023), pp. 14-23. http://geodesic.mathdoc.fr/item/MO_2023_3_a2/
[1] R. A. Akberdin, I. B. Shmigirilova, Nestandartnye zadachi shkolnoi geometrii: Priznaki ravenstva treugolnikov. Uchebno-metodicheskoe posobie, SKU im. M. Kozybaeva, Petropavlovsk, 2022, 30 pp.
[2] R. A. Akberdin, I. B. Shmigirilova, “Konstruirovanie priznakov ravenstva vypuklykh n-ugolnikov”, Matematicheskoe obrazovanie, 2019, no. 2(90), 31–36
[3] V. I. Golubev, L. N. Erganzhieva, K. K. Mosevich, Postroenie treugolnika, 5-e izd., elektron., ispr., Laboratoriya znanii, M., 2020, 251 pp.
[4] A. Zhukov, I. Akulich, Odnoznachno li opredelyaetsya treugolnik?, Kvant, 2003, no. 1, 29–31
[5] A. V. Zhukov, “Bissektrisy zadayut treugolnik”, Matematika v shkole, 2010, no. 5, 64–65