Application of the pedagogical values of the Russian school for the study of mathematics
Matematičeskoe obrazovanie, no. 3 (2023), pp. 5-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The pedagogical values of the Russian school, formulated as principles, and ways of applying them to the study of mathematics are considered. The central, leading role of the principle of conformity to nature is analyzed.
@article{MO_2023_3_a1,
     author = {K. A. Lebedev},
     title = {Application of the pedagogical values of the {Russian} school for the study of mathematics},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {5--13},
     year = {2023},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2023_3_a1/}
}
TY  - JOUR
AU  - K. A. Lebedev
TI  - Application of the pedagogical values of the Russian school for the study of mathematics
JO  - Matematičeskoe obrazovanie
PY  - 2023
SP  - 5
EP  - 13
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MO_2023_3_a1/
LA  - ru
ID  - MO_2023_3_a1
ER  - 
%0 Journal Article
%A K. A. Lebedev
%T Application of the pedagogical values of the Russian school for the study of mathematics
%J Matematičeskoe obrazovanie
%D 2023
%P 5-13
%N 3
%U http://geodesic.mathdoc.fr/item/MO_2023_3_a1/
%G ru
%F MO_2023_3_a1
K. A. Lebedev. Application of the pedagogical values of the Russian school for the study of mathematics. Matematičeskoe obrazovanie, no. 3 (2023), pp. 5-13. http://geodesic.mathdoc.fr/item/MO_2023_3_a1/

[1] I. P. Kostenko, Problema kachestva matematicheskogo obrazovaniya v svete istoricheskoi retrospektivy, RGUPS, M., 2013, 501 pp. https://russianclassicalschool.ru/pdf/kostenko-mono.pdf?ysclid=l6goxcvmx1106000115

[2] I. P. Kostenko, Reformy obrazovaniya Rossii. 1918 -2018. Idei, ideologiya, rezultaty, Izhevsk, M., 2018, 191 pp. https://russianclassicalschool.ru/uchebnye-komplekty/monografii/product/view/75/224.html/

[3] I. P. Kostenko, “Pedagogicheskie tsennosti russkoi-sovetskoi shkoly”, Matematicheskoe obrazovanie., 2022, no. 1(101), 2–6 | MR

[4] K. K. Platonov, G. G. Golubev, Psikhologiya, Vysshaya shkola, M., 1977, 246 pp.

[5] Obschaya psikhologiya https://zen.yandex.ru/media/id/5ceedae932677000aff81291/psihologiia-62272fd20915983d355e971d

[6] Pedagogicheskaya psikhologiya https://ru.wikipedia.org/wiki/Pedagogicheskaya_psikhologiya

[7] Mezhpolusharnaya asimmetriya https://ru.wikipedia.org/wiki/Mezhpolusharnaya-asimmetriya

[8] V. F. Shatalov, Sotsvetie talantov, v. 1, GUP-TsRP, M., 2001, 380 pp.; т. 2, 2003, 352 с.

[9] K. A. Lebedev, Arkhitektura elementarnoi matematiki, KubGU, Krasnodar, 2000, 34 pp.

[10] K. A. Lebedev, Arkhitektura matematiki: topologiya, algebra i funktsionalnyi analiz, KubGU, Krasnodar, 2001, 16 pp.

[11] K. A. Lebedev, “O metodicheskikh i nauchnykh printsipakh sozdaniya shkolnogo uchebnika matematiki serii «MGU — shkole». I. Chislovye sistemy (5-6 klassy)”, Matematicheskoe obrazovanie, 2016, no. 3(79), 3–20

[12] G. G. Levitas, Tekhnologiya uchebnykh tsiklov variant realizatsii rezervov klassno-urochnoi sistemy, https://bib.convdocs.org/v17022

[13] L. P. Avakyants, S. V. Kolesnikov, A. M. Saletskii, Vvedenie v kvantovuyu fiziku. Metodika resheniya zadach, MGU, M., 2018, 400 pp.

[14] Universalnyi informatsionnyi video-spravochnik po fizike Pavla Viktora. Rishelevckii litsei, https://www.youtube.com/channel/UCSdDqsIYf9v5UEWTNda1YBw

[15] I. F. Sharygin, A. V. Shevkin, Zadachi na smekalku, Prosveschenie, M., 2012, 94 pp.

[16] Georg Gegel, https://bookscafe.net/author/gegel_georg-35779.html

[17] F. Engels, Dialektika prirody, Politicheskaya literatura, M., 2017, 343 pp.

[18] F. Engels, Anti-Dyuring, Politicheskaya literatura, M., 2017, 462 pp.

[19] V. A. Kurinskii, Avtodidaktika, Kult. ucheb.-izd. tsentr “Avtodidakt”, M., 1994, 391 pp.

[20] I. Givental, A. Zadorozhnaya, Angliiskii s nulya dlya detei i vzroslykh, Piter, M., 2013, 350 pp.

[21] I. A. Givental, Kak eto skazat po-angliiski, Piter, M., 2016, 380 pp.

[22] Effektivnye i neeffektivnye metodiki izucheniya matematiki. Chast 1. Printsipy, https://zen.yandex.ru/media/id/5ceedae932677000aff81291/effektivnye-i-neeffektivnye-metodikiizucheniia-matematiki-chast-1-principy-5eb8489fa19aea5aa93006a4

[23] Effektivnye i neeffektivnye metodiki izucheniya matematiki. Chast 2. Pro elektronnyi uchebnik-spravochnik, https://zen.yandex.ru/media/id/5ceedae932677000aff81291/effektivnye-i-neeffektivnye-metodikiizucheniia-matematiki-chast-2-pro-elektronnyi-uchebnikspravochnik-5ebe9efc0bc6f5686b2ead11

[24] Derd Poia https://ru.wikipedia.org/wiki/Poia

[25] R. G. Khazankin, Vertikalnaya pedagogika, https://ru.wikipedia.org/wiki/Vertikalnaya-pedagogika

[26] V. I. Ryzhik, Zadacha dlya uchitelya matematiki. 7-11 klassy, Vako, M., 2017, 397 pp.

[27] L. D. Kudryavtsev, Sovremennaya matematika i ee prepodavanie, Nauka, M., 1980, 143 pp. | MR

[28] Berkli, arkhiv matematicheskogo kruzhka, https://mathcircle.berkeley.edu/circle-archives

[29] Pedagogicheskie tsennosti russkoi klassicheskoi shkoly i tsifrovizatsiya obucheniya, https://dzen.ru/media/id/5ceedae932677000aff81291/pedagogicheskie-cennosti-russkoi-shkoly-640863cec99c882aad477f85