Discrete interpolation formula
Matematičeskoe obrazovanie, no. 2 (2023), pp. 32-36
Cet article a éte moissonné depuis la source Math-Net.Ru
The problem of function interpolation attracted the attention of mathematicians for a long time. The very names of the interpolation formulas: Newton, Lagrange, Gauss, Bessel, Hermite and others convincingly indicate what level of mathematicians were interested in this problem.
@article{MO_2023_2_a7,
author = {V. M. Fedoseev},
title = {Discrete interpolation formula},
journal = {Matemati\v{c}eskoe obrazovanie},
pages = {32--36},
year = {2023},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MO_2023_2_a7/}
}
V. M. Fedoseev. Discrete interpolation formula. Matematičeskoe obrazovanie, no. 2 (2023), pp. 32-36. http://geodesic.mathdoc.fr/item/MO_2023_2_a7/
[1] A. Kh. Turetskii, Teoriya interpolirovaniya v zadachakh., “Vysheishaya shkola”, Minsk, 1968, 320 pp. | MR
[2] A. Kh. Turetskii, Teoriya interpolirovaniya v zadachakh, v. 2, “Vysheishaya shkola”, Minsk, 1977, 256 pp. | MR
[3] Sh. E. Mikeladze, Chislennye metody matematicheskogo analiza., Gosudarstvennoe izdatelstvo tekhniko-teoreticheskoi literatury, M., 1953, 528 pp. | MR
[4] U. G. Pirumov, Chislennye metody, Uchebnoe posobie dlya studentov vtuzov, Drofa, M., 2003, 224 pp.
[5] S. N. Bernshtein, “Ob interpolirovanii”, Sobranie sochinenii, v. 1, M., 1952, 5–7 | MR