Generalization of the Desnano–Jacobi identity
Matematičeskoe obrazovanie, no. 1 (2023), pp. 48-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Generalization of known mathematical regularities and objects makes it possible to understand the connections between these regularities and objects as special cases, as well as to derive new previously unknown consequences. In this paper, the Desnano-Jacobi identity will be generalized, with the help of which some new identities will be proved.
@article{MO_2023_1_a5,
     author = {M. Yu. Shevchenko},
     title = {Generalization of the {Desnano{\textendash}Jacobi} identity},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {48--53},
     year = {2023},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2023_1_a5/}
}
TY  - JOUR
AU  - M. Yu. Shevchenko
TI  - Generalization of the Desnano–Jacobi identity
JO  - Matematičeskoe obrazovanie
PY  - 2023
SP  - 48
EP  - 53
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MO_2023_1_a5/
LA  - ru
ID  - MO_2023_1_a5
ER  - 
%0 Journal Article
%A M. Yu. Shevchenko
%T Generalization of the Desnano–Jacobi identity
%J Matematičeskoe obrazovanie
%D 2023
%P 48-53
%N 1
%U http://geodesic.mathdoc.fr/item/MO_2023_1_a5/
%G ru
%F MO_2023_1_a5
M. Yu. Shevchenko. Generalization of the Desnano–Jacobi identity. Matematičeskoe obrazovanie, no. 1 (2023), pp. 48-53. http://geodesic.mathdoc.fr/item/MO_2023_1_a5/

[1] E. Yu. Smirnov, Diagrammy Yunga, ploskie razbieniya i znakochereduyuschiesya matritsy. Letnyaya shkola “Sovremennaya matematika” (Dubna), iyul 2013 https://users.mccme.ru/smirnoff/papers/dubna14.pdf

[2] A. G. Kurosh, Kurs vysshei algebry, “Nauka”, M., 1971 | MR

[3] E. S. Lyapin, A. E. Evseev, Algebra i teoriya chisel, “Prosveschenie”, M., 1974 | MR

[4] C. L. Dodgson, “Condensation of determinants, being a new and brief method for computing their arithmetical values”, Proceedings of the Royal Society of London, 1866–1867, no. 15, 150–155