Flow of a vector field through a smooth surface and its representation by a surface integral of the 2nd kind
Matematičeskoe obrazovanie, no. 4 (2022), pp. 39-46
Cet article a éte moissonné depuis la source Math-Net.Ru
The article proposes a refinement of the requirements for the parametrization of a smooth two-dimensional surface in three-dimensional space, so that it would be possible to correctly determine the flow of a vector field through the surface.
@article{MO_2022_4_a5,
author = {S. V. Shvedenko},
title = {Flow of a vector field through a smooth surface and its representation by a surface integral of the 2nd kind},
journal = {Matemati\v{c}eskoe obrazovanie},
pages = {39--46},
year = {2022},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MO_2022_4_a5/}
}
S. V. Shvedenko. Flow of a vector field through a smooth surface and its representation by a surface integral of the 2nd kind. Matematičeskoe obrazovanie, no. 4 (2022), pp. 39-46. http://geodesic.mathdoc.fr/item/MO_2022_4_a5/
[1] G. M. Fikhtengolts, Kurs differentsialnogo i integralnogo ischisleniya, v. III, Nauka, M., 1966
[2] S. V. Shvedenko, “Prostoi vyvod formuly ploschadi gladkoi poverkhnosti”, Matematicheskoe obrazovanie, 2021, no. 4 (100), 96–98