On the classical probability formula in experiments with an infinite number of outcomes
Matematičeskoe obrazovanie, no. 4 (2022), pp. 11-15 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article, intended for schoolchildren and teachers of secondary and higher schools, shows how the concept of the equiprobability of the occurrence of random events can be used in the study of experiments with unequal outcomes. In particular, it is shown how, using the correct coin, one can organize an experiment in which the probability of one of the outcomes of this experiment is equal to any preassigned number (0<p<1).
@article{MO_2022_4_a1,
     author = {O. P. Vinogradov},
     title = {On the classical probability formula in experiments with an infinite number of outcomes},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {11--15},
     year = {2022},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2022_4_a1/}
}
TY  - JOUR
AU  - O. P. Vinogradov
TI  - On the classical probability formula in experiments with an infinite number of outcomes
JO  - Matematičeskoe obrazovanie
PY  - 2022
SP  - 11
EP  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/MO_2022_4_a1/
LA  - ru
ID  - MO_2022_4_a1
ER  - 
%0 Journal Article
%A O. P. Vinogradov
%T On the classical probability formula in experiments with an infinite number of outcomes
%J Matematičeskoe obrazovanie
%D 2022
%P 11-15
%N 4
%U http://geodesic.mathdoc.fr/item/MO_2022_4_a1/
%G ru
%F MO_2022_4_a1
O. P. Vinogradov. On the classical probability formula in experiments with an infinite number of outcomes. Matematičeskoe obrazovanie, no. 4 (2022), pp. 11-15. http://geodesic.mathdoc.fr/item/MO_2022_4_a1/