Oriented angles, generalized pedal triangles and generalized Simson lines
Matematičeskoe obrazovanie, no. 4 (2022), pp. 2-10
Cet article a éte moissonné depuis la source Math-Net.Ru
In the article, with the help of oriented angles, the concepts of a generalized pedal triangle and a generalized Simson's line are introduced. For the newly introduced concepts, several properties are proved that are analogous to those of pedal triangles and the Simson line.
@article{MO_2022_4_a0,
author = {A. N. Afanasyev},
title = {Oriented angles, generalized pedal triangles and generalized {Simson} lines},
journal = {Matemati\v{c}eskoe obrazovanie},
pages = {2--10},
year = {2022},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MO_2022_4_a0/}
}
A. N. Afanasyev. Oriented angles, generalized pedal triangles and generalized Simson lines. Matematičeskoe obrazovanie, no. 4 (2022), pp. 2-10. http://geodesic.mathdoc.fr/item/MO_2022_4_a0/
[1] A. Ruinskii, “Pedalnyi treugolnik”, Matematicheskoe obrazovanie, 2001, no. 3(18), 31–48
[2] A. Ruinskii, “Pedalnyi treugolnik”, 2001, no. 4(19), 65–78
[3] S. L. Greittser, G. S. M. Kokseter, Novye vstrechi s geometriei, Nauka, M., 1978
[4] E. D. Kulanin, “O pryamykh Simsona, krivoi Shteinera i kubike Mak-Keya”, Matematicheskoe prosveschenie, 2020, no. 10, 243–264
[5] Evan Chen, Euclidean Geometry in Mathematical Olympiads, The Mathematical Association of America, 2016 | MR
[6] A. N. Afanasev, “Prostye geometricheskie fakty, pomogayuschie reshit zadachu po geometrii”, Matematicheskoe obrazovanie, 2020, no. 2(94), 2–17
[7] A. N. Afanasev, Olimpiadnye zadachi po geometrii, Ileksa, 2022