Remarkable triangles
Matematičeskoe obrazovanie, no. 3 (2022), pp. 2-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Four types of triangles are considered, in which the base is the average (arithmetic, geometric, harmonic, quadratic) of the sides. Some new properties of these triangles are described. The article is printed with a continuation.
@article{MO_2022_3_a0,
     author = {S. I. Kublanovskii and S. G. Bershadskiy},
     title = {Remarkable triangles},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {2--14},
     year = {2022},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2022_3_a0/}
}
TY  - JOUR
AU  - S. I. Kublanovskii
AU  - S. G. Bershadskiy
TI  - Remarkable triangles
JO  - Matematičeskoe obrazovanie
PY  - 2022
SP  - 2
EP  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MO_2022_3_a0/
LA  - ru
ID  - MO_2022_3_a0
ER  - 
%0 Journal Article
%A S. I. Kublanovskii
%A S. G. Bershadskiy
%T Remarkable triangles
%J Matematičeskoe obrazovanie
%D 2022
%P 2-14
%N 3
%U http://geodesic.mathdoc.fr/item/MO_2022_3_a0/
%G ru
%F MO_2022_3_a0
S. I. Kublanovskii; S. G. Bershadskiy. Remarkable triangles. Matematičeskoe obrazovanie, no. 3 (2022), pp. 2-14. http://geodesic.mathdoc.fr/item/MO_2022_3_a0/

[1] I. Zetel, “Svoistva treugolnika, storony kotorogo sostavlyayut arifmeticheskuyu progressiyu”, Sbornik statei po elementarnoi i nachalam vysshei matematiki, Matem. prosv., ser. 1, 5, 1936, 12–21

[2] I. Kushnir, “Klassicheskie srednie v treugolnike”, Kvant, 2013, no. 2, 32–33

[3] A. Blinkov, Klassicheskie srednie v arifmetike i geometrii, MTsNMO, M., 2012

[4] S. Kublanovskii, Evklidova geometriya v zadachakh i uprazhneniyakh, SPB, 2021 (to appear)