Sums of series of the form $\sum\limits^{\infty}_{k=1}\frac{1}{k^2+ak+b}$
Matematičeskoe obrazovanie, no. 1 (2022), pp. 48-54
Cet article a éte moissonné depuis la source Math-Net.Ru
The article considers the possibility of reducing the sum of a series of the indicated type to elementary functions — both directly and in terms of some approximations. For this it is convenient to use the symmetric meromorphic function of two variables $\sum\limits^{\infty}_{k=1}\frac{1}{k^2+ak+b}$.
@article{MO_2022_1_a5,
author = {E. I. Znak},
title = {Sums of series of the form $\sum\limits^{\infty}_{k=1}\frac{1}{k^2+ak+b}$},
journal = {Matemati\v{c}eskoe obrazovanie},
pages = {48--54},
year = {2022},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MO_2022_1_a5/}
}
E. I. Znak. Sums of series of the form $\sum\limits^{\infty}_{k=1}\frac{1}{k^2+ak+b}$. Matematičeskoe obrazovanie, no. 1 (2022), pp. 48-54. http://geodesic.mathdoc.fr/item/MO_2022_1_a5/