Trigonometry and problem solving in geometry
Matematičeskoe obrazovanie, no. 1 (2022), pp. 12-20
Cet article a éte moissonné depuis la source Math-Net.Ru
In the article, using the example of a number of Olympiad problems, it is shown that a solution using trigonometry quickly and easily leads to an answer, while the possibility of finding a purely geometric solution is not obvious.
@article{MO_2022_1_a2,
author = {A. N. Afanasyev},
title = {Trigonometry and problem solving in geometry},
journal = {Matemati\v{c}eskoe obrazovanie},
pages = {12--20},
year = {2022},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MO_2022_1_a2/}
}
A. N. Afanasyev. Trigonometry and problem solving in geometry. Matematičeskoe obrazovanie, no. 1 (2022), pp. 12-20. http://geodesic.mathdoc.fr/item/MO_2022_1_a2/
[1] A. N. Afanasev, “Pyat reshenii odnoi izvestnoi zadachi”, Matematicheskoe obrazovanie, 2018, no. 3 (87), 2–7
[2] I. F. Sharygin, Zadachi po geometrii (Planimetriya), Bibliotechka “Kvant”, Nauka, M., 1986, 224 pp.
[3] P. Yui, Euclidean Geometry Notes, http://math.fau.edu/Yiu/EuclideanGeometryNotes.pdf
[4] S. V. Romanov, I. F. Sharygin, “Algebraicheskii metod resheniya geometricheskikh zadach”, Kvant, 1975, no. 11, 47–49