The method of affine transformations for solving Diophantine equations
Matematičeskoe obrazovanie, no. 3 (2021), pp. 89-94
Cet article a éte moissonné depuis la source Math-Net.Ru
The main goal of this work is to find rational points of a curve in the plane defined by an equation of the second degree.
@article{MO_2021_3_a9,
author = {B. Zh. Sagindykov},
title = {The method of affine transformations for solving {Diophantine} equations},
journal = {Matemati\v{c}eskoe obrazovanie},
pages = {89--94},
year = {2021},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MO_2021_3_a9/}
}
B. Zh. Sagindykov. The method of affine transformations for solving Diophantine equations. Matematičeskoe obrazovanie, no. 3 (2021), pp. 89-94. http://geodesic.mathdoc.fr/item/MO_2021_3_a9/
[1] B. Zh. Sagindykov, Bimurat Zhanar, “Estestvennye i matematicheskie nauki: voprosy i tendentsii razvitiya”, materialy mezhdunarodnoi zaochnoi-prakticheskoi konferentsii 01 aprelya 2013 g., Novosibirsk, 2013, 150 pp.
[2] B. Zh. Sagindykov, T. E. Dzhatykov, “Dostizheniya vuzovskoi nauki 2021”: sbornik statei KhVII mezhdunarodnogo nauchno-issledovatelskogo konkursa, MTsNS “Nauka i prosveschenie”, Penza, 2021, 382 pp.
[3] N. J. Wildberger, Pell's equation without irrational numbers, arXiv: 0806.2490v1 [math.H0]