On inequalities in a tetrahedron, finished
Matematičeskoe obrazovanie, no. 3 (2021), pp. 58-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The exact boundaries of variation of the surface area, volume, and other quantities of tetrahedrons are found for a given ratio of the radii of the inscribed and circumscribed spheres. The relationship between the method of conditional extremum and envelopes is considered on rather bright and meaningful examples. Finished.
@article{MO_2021_3_a6,
     author = {V. N. Novikov},
     title = {On inequalities in a tetrahedron, finished},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {58--69},
     year = {2021},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2021_3_a6/}
}
TY  - JOUR
AU  - V. N. Novikov
TI  - On inequalities in a tetrahedron, finished
JO  - Matematičeskoe obrazovanie
PY  - 2021
SP  - 58
EP  - 69
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MO_2021_3_a6/
LA  - ru
ID  - MO_2021_3_a6
ER  - 
%0 Journal Article
%A V. N. Novikov
%T On inequalities in a tetrahedron, finished
%J Matematičeskoe obrazovanie
%D 2021
%P 58-69
%N 3
%U http://geodesic.mathdoc.fr/item/MO_2021_3_a6/
%G ru
%F MO_2021_3_a6
V. N. Novikov. On inequalities in a tetrahedron, finished. Matematičeskoe obrazovanie, no. 3 (2021), pp. 58-69. http://geodesic.mathdoc.fr/item/MO_2021_3_a6/

[1] D. S. Mitrinovic, J. I. Pecaric, V. Volenec, Recent advances in geometric inequalities, Kluwer Academic Publishers, Dordrecht-Boston-London, 1989 | Zbl

[2] V. N. Novikov, Formuly v pyli tysyacheletii, “Sherna”, 2020 (Nomer yuridicheskoi registratsii dokumenta (teksta): 50/35-N/50-2020-1-404)

[3] Ya. P. Ponarin, Elementarnaya geometriya, v. 2, Izd. MTsNMO, 2006