@article{MO_2021_2_a3,
author = {S. F. Osinkin},
title = {Triangles with specified values of the incircle and circumcircle radii},
journal = {Matemati\v{c}eskoe obrazovanie},
pages = {28--33},
year = {2021},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MO_2021_2_a3/}
}
S. F. Osinkin. Triangles with specified values of the incircle and circumcircle radii. Matematičeskoe obrazovanie, no. 2 (2021), pp. 28-33. http://geodesic.mathdoc.fr/item/MO_2021_2_a3/
[1] P. Mironescu, L. Panaitopol, “The existence of a triangle with prescribed angle bisector lengths”, Amer. Math. Monthly, 101 (1994), 58–60 | DOI | Zbl
[2] A. Zhukov, I. Akulich, Odnoznachno li opredelyaetsya treugolnik?, Kvant, 2003, no. 1, 29–31
[3] S. Osinkin, “On the existence of a triangle with prescribed bisector lengths”, Forum Geometricorum, 16 (2016), 399–405 | Zbl
[4] S. Osinkin, The method and examples of solving problems analogous to the “problem of three bisectors”, arXiv: 1910.01855v1 [math.H0]
[5] D. O. Shklyarskii, N. N. Chentsov, I. M. Yaglom, Izbrannye zadachi i teoremy elementarnoi matematiki, v. 2, Geometriya (planimetriya), Gos. izd. tekhniko-teoreticheskoi literatury, M., 1952
[6] R. Kurant, G. Robbins, Chto takoe matematika?, MTsNMO, M., 2004
[7] V. I. Golubev, L. N. Erganzhieva, K. K. Mosevich, Postroenie treugolnika, 4-e izd., Laboratoriya znanii, M., 2015