“Matryoshkas” and stability in environmental models
Matematičeskoe obrazovanie, no. 1 (2021), pp. 31-37
Cet article a éte moissonné depuis la source Math-Net.Ru
The article studies the stability of equilibrium positions for a number of discrete dynamical systems, mathematical models of some ecological phenomena (isolated population, migration, competition). The research method is based on the construction of the so-called “matryoshka”, a family of nested “segments” in the phase space, which are determined by a specially selected order relation.
@article{MO_2021_1_a5,
author = {V. G. Ilichev},
title = {{\textquotedblleft}Matryoshkas{\textquotedblright} and stability in environmental models},
journal = {Matemati\v{c}eskoe obrazovanie},
pages = {31--37},
year = {2021},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MO_2021_1_a5/}
}
V. G. Ilichev. “Matryoshkas” and stability in environmental models. Matematičeskoe obrazovanie, no. 1 (2021), pp. 31-37. http://geodesic.mathdoc.fr/item/MO_2021_1_a5/
[1] V. I. Arnold, Obyknovennye differentsialnye uravneniya, Nauka, M., 1984
[2] W. E. Ricker, “Stock and recruitment”, J. Fish. Res. Board of Canada, 11:5 (1954) | DOI
[3] M. V. Yakobson, “O svoistvakh odnoparametricheskogo semeistva dinamicheskikh cistem”, UMN, 31:2(188) (1976) | Zbl
[4] M. A. Krasnoselskii, P. P. Zabreiko, Geometricheskie metody nelineinogo analiza, Nauka, M., 1975
[5] G. Rademakher, O. Teplits, Chisla i figury, Nauka, M., 1968
[6] V. G. Ilichev, Ustoichivost, adaptatsiya i upravlenie v modelyakh ekologii, Fizmatlit, M., 2009