Hermite interpolation polynomial for holomorphic functions in a simply connected domain
Matematičeskoe obrazovanie, no. 4 (2020), pp. 35-41
Cet article a éte moissonné depuis la source Math-Net.Ru
Simple formulas are found for the coefficients of the Hermite interpolation polynomial if the function being approximated is holomorphic in a simply connected domain.
Keywords:
holomorphic function, simply connected region, symmetric expression.
Mots-clés : Hermite interpolation polynomial
Mots-clés : Hermite interpolation polynomial
@article{MO_2020_4_a5,
author = {N. V. Ilyushechkin},
title = {Hermite interpolation polynomial for holomorphic functions in a simply connected domain},
journal = {Matemati\v{c}eskoe obrazovanie},
pages = {35--41},
year = {2020},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MO_2020_4_a5/}
}
N. V. Ilyushechkin. Hermite interpolation polynomial for holomorphic functions in a simply connected domain. Matematičeskoe obrazovanie, no. 4 (2020), pp. 35-41. http://geodesic.mathdoc.fr/item/MO_2020_4_a5/
[1] I. S. Berezin, N. P. Zhidkov, Metody vychislenii, v. 1, Fizmatgiz, M., 1962 | MR
[2] I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985
[3] D. K. Faddeev, Lektsii po algebre, Nauka, M., 1984 | MR
[4] B. V. Shabat, Vvedenie v kompleksnyi analiz, v. 1, Nauka, M., 1985
[5] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1988 | MR
[6] D. K. Faddeev, V. N. Faddeeva, Vychislitelnye metody lineinoi algebry, Fizmatgiz, M., 1963 | MR
[7] N. V. Ilyushechkin, “O chastnykh proizvodnykh simmetricheskikh mnogochlenov po elementarnym mnogochlenam”, Matematicheskoe obrazovanie, 2019, no. 3(91), 18–21