Intersection point of median, bisector, and height of a triangle as a basis of didactic material for repeating planimetry themes
Matematičeskoe obrazovanie, no. 4 (2020), pp. 31-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article presents didactic material for organizing the repetition of planimetry topics. The material is a list of geometric problems created using the same geometric object — the intersection points of the median, bisector, and height of a triangle.
Keywords: intersection point of the median, bisector and height of a triangle.
@article{MO_2020_4_a4,
     author = {P. S. Karavaev and N. V. Mastinen},
     title = {Intersection point of median, bisector, and height of a triangle as a basis of didactic material for repeating planimetry themes},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {31--34},
     year = {2020},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2020_4_a4/}
}
TY  - JOUR
AU  - P. S. Karavaev
AU  - N. V. Mastinen
TI  - Intersection point of median, bisector, and height of a triangle as a basis of didactic material for repeating planimetry themes
JO  - Matematičeskoe obrazovanie
PY  - 2020
SP  - 31
EP  - 34
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/MO_2020_4_a4/
LA  - ru
ID  - MO_2020_4_a4
ER  - 
%0 Journal Article
%A P. S. Karavaev
%A N. V. Mastinen
%T Intersection point of median, bisector, and height of a triangle as a basis of didactic material for repeating planimetry themes
%J Matematičeskoe obrazovanie
%D 2020
%P 31-34
%N 4
%U http://geodesic.mathdoc.fr/item/MO_2020_4_a4/
%G ru
%F MO_2020_4_a4
P. S. Karavaev; N. V. Mastinen. Intersection point of median, bisector, and height of a triangle as a basis of didactic material for repeating planimetry themes. Matematičeskoe obrazovanie, no. 4 (2020), pp. 31-34. http://geodesic.mathdoc.fr/item/MO_2020_4_a4/

[1] V. V, Prasolov, Zadachi po planimetrii, uchebnoe posobie, 5-e izdanie., ispr. i dop., MTsNMO, OAO “Moskovskie uchebniki”, M., 2006, 640 pp.

[2] “Zadachi po matematike i fizike”, Kvant, 1970, no. 10, 37

[3] “Zadachi po matematike i fizike”, Kvant, 1997, no. 1, 24

[4] “Zadachi po matematike i fizike”, Kvant, 1997, no. 4, 20—21

[5] A. D. Blinkov (sostavitel), Moskovskie regaty, v. 2, 2006–2013, MTsNMO, Moskva, 2014, 320 pp.

[6] A. A. Zaslavskii, Olimpiady imeni I.F. Sharygina (2010—2014), MTsNMO, Moskva, 2015, 168 pp.

[7] Informatsionnoe soobschenie o provedenii okruzhnogo etapa Moskovskoi regionalnoi olimpiady po matematike v 2007/2008 uchebnom godu. Olimpiady dlya shkolnikov, http://olympiads.mccme.ru/mmo/okrug/okr08.htm

[8] V. I. Sedakova, “Formirovanie issledovatelskikh kachestv u shkolnikov v protsesse resheniya matematicheskikh zadach”, Vestnik Surgutskogo gosudarstvennogo pedagogicheskogo universiteta, 2010, no. 1(8), 74–81

[9] Encyclopedia of Triangle Centers, https://faculty.evansville.edu/ck6/encyclopedia/ETC.html

[10] Zadachi http://problems.ru/view_problem_details_new.php?id=53456

[11] Stack Exchange Network https://math.stackexchange.com/questions/914662/the-concurrence-of-angle-bisector-median-and-altitude-in-an-acute-triangle

[12] “Zadachi po matematike i fizike”, Kvant, 1971, no. 7, 31–32

[13] N. B. Vasilev, Zadachi Vsesoyuznykh matematicheskikh olimpiad, Nauka, M., 1988, 288 pp.

[14] Math is fun forum, http://www.mathisfunforum.com/viewtopic.php?pid=414769#p414769